Menu Close

Question-90773




Question Number 90773 by ajfour last updated on 26/Apr/20
Commented by ajfour last updated on 26/Apr/20
If equation of parabola is y=x^2 ,   find equation of AC.
$${If}\:{equation}\:{of}\:{parabola}\:{is}\:{y}={x}^{\mathrm{2}} , \\ $$$$\:{find}\:{equation}\:{of}\:{AC}. \\ $$
Answered by mr W last updated on 26/Apr/20
A(−a,a^2 )  eqn. of AC:  y=a^2 +(1/(2a))(x+a)    c^2 =a^2 +(1/(2a))(c+a)   ...(i)  (c^2 −a^2 )^2 +(c+a)^2 =c^4    ...(ii)  from (i):  2ac^2 −c−a(2a^2 +1)=0  ⇒c=((1+(√(1+8a^2 (2a^2 +1))))/(4a))  from (ii):  (2a^2 −1)c^2 −2ac−a^2 (1+a^2 )=0  ⇒c=((a+a^2 (√(1+2a^2 )))/(2a^2 −1))  ((1+(√(1+8a^2 (2a^2 +1))))/(4a))=((a+a^2 (√(1+2a^2 )))/(2a^2 −1))  ⇒a≈1.6159
$${A}\left(−{a},{a}^{\mathrm{2}} \right) \\ $$$${eqn}.\:{of}\:{AC}: \\ $$$${y}={a}^{\mathrm{2}} +\frac{\mathrm{1}}{\mathrm{2}{a}}\left({x}+{a}\right) \\ $$$$ \\ $$$${c}^{\mathrm{2}} ={a}^{\mathrm{2}} +\frac{\mathrm{1}}{\mathrm{2}{a}}\left({c}+{a}\right)\:\:\:…\left({i}\right) \\ $$$$\left({c}^{\mathrm{2}} −{a}^{\mathrm{2}} \right)^{\mathrm{2}} +\left({c}+{a}\right)^{\mathrm{2}} ={c}^{\mathrm{4}} \:\:\:…\left({ii}\right) \\ $$$${from}\:\left({i}\right): \\ $$$$\mathrm{2}{ac}^{\mathrm{2}} −{c}−{a}\left(\mathrm{2}{a}^{\mathrm{2}} +\mathrm{1}\right)=\mathrm{0} \\ $$$$\Rightarrow{c}=\frac{\mathrm{1}+\sqrt{\mathrm{1}+\mathrm{8}{a}^{\mathrm{2}} \left(\mathrm{2}{a}^{\mathrm{2}} +\mathrm{1}\right)}}{\mathrm{4}{a}} \\ $$$${from}\:\left({ii}\right): \\ $$$$\left(\mathrm{2}{a}^{\mathrm{2}} −\mathrm{1}\right){c}^{\mathrm{2}} −\mathrm{2}{ac}−{a}^{\mathrm{2}} \left(\mathrm{1}+{a}^{\mathrm{2}} \right)=\mathrm{0} \\ $$$$\Rightarrow{c}=\frac{{a}+{a}^{\mathrm{2}} \sqrt{\mathrm{1}+\mathrm{2}{a}^{\mathrm{2}} }}{\mathrm{2}{a}^{\mathrm{2}} −\mathrm{1}} \\ $$$$\frac{\mathrm{1}+\sqrt{\mathrm{1}+\mathrm{8}{a}^{\mathrm{2}} \left(\mathrm{2}{a}^{\mathrm{2}} +\mathrm{1}\right)}}{\mathrm{4}{a}}=\frac{{a}+{a}^{\mathrm{2}} \sqrt{\mathrm{1}+\mathrm{2}{a}^{\mathrm{2}} }}{\mathrm{2}{a}^{\mathrm{2}} −\mathrm{1}} \\ $$$$\Rightarrow{a}\approx\mathrm{1}.\mathrm{6159} \\ $$
Commented by mr W last updated on 26/Apr/20
Commented by ajfour last updated on 26/Apr/20
Wonderful Sir, thanks. Cannot we   find exact value of c^2 , sir?
$${Wonderful}\:{Sir},\:{thanks}.\:{Cannot}\:{we}\: \\ $$$${find}\:{exact}\:{value}\:{of}\:{c}^{\mathrm{2}} ,\:{sir}? \\ $$
Commented by mr W last updated on 26/Apr/20
i think no.
$${i}\:{think}\:{no}. \\ $$
Commented by ajfour last updated on 26/Apr/20
should be biquadratic in c^2 =r, sir.
$${should}\:{be}\:{biquadratic}\:{in}\:{c}^{\mathrm{2}} ={r},\:{sir}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *