Question Number 90819 by ajfour last updated on 26/Apr/20
Commented by ajfour last updated on 26/Apr/20
$${mass}\:{of}\:{rod}\:{is}\:{M},\:{and}\:\alpha=\mathrm{0},\:{but} \\ $$$${rod}\:{rotates}\:{with}\:{constant}\:{angular} \\ $$$${veloity}\:\omega_{\mathrm{0}} \:,\:{then}\:{find}\:{relative}\: \\ $$$${speed}\:{of}\:{small}\:{mass}\:{m}\:{with} \\ $$$${respect}\:{to}\:{rod},\:{as}\:{it}\:{reaches}\: \\ $$$${the}\:{extreme}\:{end}\:\left({a}={l}\right)\:{from}\:{the} \\ $$$${hinged}\:{end}\:\left({a}=\mathrm{0}\right). \\ $$
Commented by ajfour last updated on 26/Apr/20
$${this}\:{one}\:{from}\:{a}\:{renowned} \\ $$$${physics}\:{book},\:{have}\:{answer}. \\ $$
Answered by ajfour last updated on 26/Apr/20
Answered by mr W last updated on 26/Apr/20
$${when}\:{sleeve}\:{is}\:{at}\:{position}\:{x}: \\ $$$${angular}\:{speed}\:{of}\:{rod}\:=\omega \\ $$$${speed}\:{of}\:{sleeve}\:{along}\:{rod}={u} \\ $$$${acc}.\:{of}\:{sleeve}\:{along}\:{rod}={a}={u}\frac{{du}}{{dx}} \\ $$$${I}\omega_{\mathrm{0}} =\left({I}+{mx}^{\mathrm{2}} \right)\omega \\ $$$$\Rightarrow\omega=\frac{\frac{{Ml}^{\mathrm{2}} }{\mathrm{3}}}{\frac{{Ml}^{\mathrm{2}} }{\mathrm{3}}+{mx}^{\mathrm{2}} }\omega_{\mathrm{0}} =\frac{{Ml}^{\mathrm{2}} }{{Ml}^{\mathrm{2}} +\mathrm{3}{mx}^{\mathrm{2}} }\omega_{\mathrm{0}} \\ $$$${ma}−{m}\omega^{\mathrm{2}} {x}=\mathrm{0} \\ $$$$\Rightarrow{u}\frac{{du}}{{dx}}−\omega^{\mathrm{2}} {x}=\mathrm{0} \\ $$$$\Rightarrow{u}\frac{{du}}{{dx}}−\left(\frac{{Ml}^{\mathrm{2}} \omega_{\mathrm{0}} }{{Ml}^{\mathrm{2}} +\mathrm{3}{mx}^{\mathrm{2}} }\right)^{\mathrm{2}} {x}=\mathrm{0} \\ $$$$\Rightarrow\int_{\mathrm{0}} ^{{u}_{{max}} } {udu}=\int_{\mathrm{0}} ^{{l}} \left(\frac{{Ml}^{\mathrm{2}} \omega_{\mathrm{0}} }{{Ml}^{\mathrm{2}} +\mathrm{3}{mx}^{\mathrm{2}} }\right)^{\mathrm{2}} {xdx} \\ $$$$\Rightarrow\frac{{u}_{{mac}} ^{\mathrm{2}} }{\mathrm{2}}=\left(\frac{{Ml}^{\mathrm{2}} \omega_{\mathrm{0}} }{\mathrm{3}{m}}\right)^{\mathrm{2}} \int_{\mathrm{0}} ^{{l}} \frac{{xdx}}{\left(\frac{{Ml}^{\mathrm{2}} }{\mathrm{3}{m}}+{x}^{\mathrm{2}} \right)^{\mathrm{2}} } \\ $$$$\Rightarrow{u}_{{max}} ^{\mathrm{2}} =\left(\frac{{Ml}^{\mathrm{2}} \omega_{\mathrm{0}} }{\mathrm{3}{m}}\right)^{\mathrm{2}} \int_{\mathrm{0}} ^{{l}} \frac{{d}\left(\frac{{Ml}^{\mathrm{2}} }{\mathrm{3}{m}}+{x}^{\mathrm{2}} \right)}{\left(\frac{{Ml}^{\mathrm{2}} }{\mathrm{3}{m}}+{x}^{\mathrm{2}} \right)^{\mathrm{2}} } \\ $$$$\Rightarrow{u}_{{max}} ^{\mathrm{2}} =\left(\frac{{Ml}^{\mathrm{2}} \omega_{\mathrm{0}} }{\mathrm{3}{m}}\right)^{\mathrm{2}} \left[\frac{\mathrm{1}}{\frac{{Ml}^{\mathrm{2}} }{\mathrm{3}{m}}+{x}^{\mathrm{2}} }\right]_{{l}} ^{\mathrm{0}} \\ $$$$\Rightarrow{u}_{{max}} ^{\mathrm{2}} =\left(\frac{{Ml}\omega_{\mathrm{0}} }{\mathrm{3}{m}}\right)^{\mathrm{2}} \left[\frac{\mathrm{1}}{\frac{{M}}{\mathrm{3}{m}}}−\frac{\mathrm{1}}{\frac{{M}}{\mathrm{3}{m}}+\mathrm{1}}\right] \\ $$$$\Rightarrow{u}_{{max}} ^{\mathrm{2}} =\left(\frac{{Ml}\omega_{\mathrm{0}} }{\mathrm{3}{m}}\right)^{\mathrm{2}} \left[\frac{\mathrm{1}}{\frac{{M}}{\mathrm{3}{m}}\left(\frac{{M}}{\mathrm{3}{m}}+\mathrm{1}\right)}\right] \\ $$$$\Rightarrow{u}_{{max}} ={l}\omega_{\mathrm{0}} \sqrt{\frac{{M}}{{M}+\mathrm{3}{m}}} \\ $$
Commented by ajfour last updated on 26/Apr/20
$${Excellent}\:{Sir}!\:{Very}\:{basic}\:{way}. \\ $$$$\:\:{thanks}\:{Sir}! \\ $$