Menu Close

Question-90819




Question Number 90819 by ajfour last updated on 26/Apr/20
Commented by ajfour last updated on 26/Apr/20
mass of rod is M, and α=0, but  rod rotates with constant angular  veloity ω_0  , then find relative   speed of small mass m with  respect to rod, as it reaches   the extreme end (a=l) from the  hinged end (a=0).
massofrodisM,andα=0,butrodrotateswithconstantangularveloityω0,thenfindrelativespeedofsmallmassmwithrespecttorod,asitreachestheextremeend(a=l)fromthehingedend(a=0).
Commented by ajfour last updated on 26/Apr/20
this one from a renowned  physics book, have answer.
thisonefromarenownedphysicsbook,haveanswer.
Answered by ajfour last updated on 26/Apr/20
Answered by mr W last updated on 26/Apr/20
when sleeve is at position x:  angular speed of rod =ω  speed of sleeve along rod=u  acc. of sleeve along rod=a=u(du/dx)  Iω_0 =(I+mx^2 )ω  ⇒ω=(((Ml^2 )/3)/(((Ml^2 )/3)+mx^2 ))ω_0 =((Ml^2 )/(Ml^2 +3mx^2 ))ω_0   ma−mω^2 x=0  ⇒u(du/dx)−ω^2 x=0  ⇒u(du/dx)−(((Ml^2 ω_0 )/(Ml^2 +3mx^2 )))^2 x=0  ⇒∫_0 ^u_(max)  udu=∫_0 ^l (((Ml^2 ω_0 )/(Ml^2 +3mx^2 )))^2 xdx  ⇒(u_(mac) ^2 /2)=(((Ml^2 ω_0 )/(3m)))^2 ∫_0 ^l ((xdx)/((((Ml^2 )/(3m))+x^2 )^2 ))  ⇒u_(max) ^2 =(((Ml^2 ω_0 )/(3m)))^2 ∫_0 ^l ((d(((Ml^2 )/(3m))+x^2 ))/((((Ml^2 )/(3m))+x^2 )^2 ))  ⇒u_(max) ^2 =(((Ml^2 ω_0 )/(3m)))^2 [(1/(((Ml^2 )/(3m))+x^2 ))]_l ^0   ⇒u_(max) ^2 =(((Mlω_0 )/(3m)))^2 [(1/(M/(3m)))−(1/((M/(3m))+1))]  ⇒u_(max) ^2 =(((Mlω_0 )/(3m)))^2 [(1/((M/(3m))((M/(3m))+1)))]  ⇒u_(max) =lω_0 (√(M/(M+3m)))
whensleeveisatpositionx:angularspeedofrod=ωspeedofsleevealongrod=uacc.ofsleevealongrod=a=ududxIω0=(I+mx2)ωω=Ml23Ml23+mx2ω0=Ml2Ml2+3mx2ω0mamω2x=0ududxω2x=0ududx(Ml2ω0Ml2+3mx2)2x=00umaxudu=0l(Ml2ω0Ml2+3mx2)2xdxumac22=(Ml2ω03m)20lxdx(Ml23m+x2)2umax2=(Ml2ω03m)20ld(Ml23m+x2)(Ml23m+x2)2umax2=(Ml2ω03m)2[1Ml23m+x2]l0umax2=(Mlω03m)2[1M3m1M3m+1]umax2=(Mlω03m)2[1M3m(M3m+1)]umax=lω0MM+3m
Commented by ajfour last updated on 26/Apr/20
Excellent Sir! Very basic way.    thanks Sir!
ExcellentSir!Verybasicway.thanksSir!

Leave a Reply

Your email address will not be published. Required fields are marked *