Question Number 91166 by student work last updated on 28/Apr/20
Commented by Prithwish Sen 1 last updated on 28/Apr/20
$$\mathrm{the}\:\mathrm{curves} \\ $$$$\boldsymbol{\mathrm{y}}=\boldsymbol{\mathrm{x}}^{\mathrm{2}} \:\boldsymbol{\mathrm{and}}\:\boldsymbol{\mathrm{y}}=\boldsymbol{\mathrm{e}}^{\boldsymbol{\mathrm{x}}} \:\mathrm{can}\:\mathrm{meet}\:\mathrm{at}\:\mathrm{atmost}\:\mathrm{two}\:\mathrm{points}\overset{} {.} \\ $$
Commented by jagoll last updated on 28/Apr/20
$${using}\:{Lambert}\:{W}\:{function} \\ $$
Commented by 675480065 last updated on 28/Apr/20
$$\mathrm{true} \\ $$$$\mathrm{but}\:\mathrm{can}\:\mathrm{newton}\:\mathrm{raphson}\:\mathrm{not}\:\mathrm{work} \\ $$
Commented by mr W last updated on 28/Apr/20
$${it}\:{asks}\:{only}\:{the}\:{number}\:{of}\:{solutions}, \\ $$$${not}\:{the}\:{solutions}\:{self}. \\ $$
Commented by Prithwish Sen 1 last updated on 28/Apr/20
$$\:\:\boldsymbol{\mathrm{x}}\:\backsimeq\:−\mathrm{0}.\mathrm{7034}\:\:\:\:\left(\boldsymbol{\mathrm{approx}}.\right) \\ $$
Commented by mr W last updated on 28/Apr/20
$${there}\:{is}\:{only}\:{one}\:{solution}\:{which}\:{is} \\ $$$${x}=−\mathrm{2}\:\mathbb{W}\left(\frac{\mathrm{1}}{\mathrm{2}}\right)\approx−\mathrm{0}.\mathrm{7034} \\ $$
Commented by MJS last updated on 28/Apr/20
$$\mathrm{there}'\mathrm{s}\:\mathrm{no}\:\mathrm{other}\:\mathrm{solution}\:\in\mathbb{C} \\ $$