Menu Close

Question-91167




Question Number 91167 by mr W last updated on 28/Apr/20
Commented by mr W last updated on 28/Apr/20
also
$${also} \\ $$
Commented by mr W last updated on 28/Apr/20
a long rod with mass m and length l  rests on a cylinder with mass M and  radius R. a small impuls is given  and the rod begins to fall. find the  time it needs till one end hits the  ground. friction between cylinder  and rod and ground is enough such  that no slipping occurs.
$${a}\:{long}\:{rod}\:{with}\:{mass}\:{m}\:{and}\:{length}\:{l} \\ $$$${rests}\:{on}\:{a}\:{cylinder}\:{with}\:{mass}\:{M}\:{and} \\ $$$${radius}\:{R}.\:{a}\:{small}\:{impuls}\:{is}\:{given} \\ $$$${and}\:{the}\:{rod}\:{begins}\:{to}\:{fall}.\:{find}\:{the} \\ $$$${time}\:{it}\:{needs}\:{till}\:{one}\:{end}\:{hits}\:{the} \\ $$$${ground}.\:{friction}\:{between}\:{cylinder} \\ $$$${and}\:{rod}\:{and}\:{ground}\:{is}\:{enough}\:{such} \\ $$$${that}\:{no}\:{slipping}\:{occurs}. \\ $$
Commented by jagoll last updated on 28/Apr/20
physics sir?
$${physics}\:{sir}? \\ $$
Commented by ajfour last updated on 29/Apr/20
very difficult one sir, point of  contact of cylinder and plank (rod)  shall go on changing too, many  interdependent things..!
$${very}\:{difficult}\:{one}\:{sir},\:{point}\:{of} \\ $$$${contact}\:{of}\:{cylinder}\:{and}\:{plank}\:\left({rod}\right) \\ $$$${shall}\:{go}\:{on}\:{changing}\:{too},\:{many} \\ $$$${interdependent}\:{things}..! \\ $$
Answered by mr W last updated on 28/Apr/20
Commented by mr W last updated on 29/Apr/20
rotation of cylinder ϕ  rotation of rod θ  OC=Rϕ  PS=R(ϕ−θ)  rod hits the ground if  [(l/2)+R(ϕ−θ)]tan (θ/2)=R    x_S =Rϕ+R sin θ+R(ϕ−θ)cos θ  y_S =R cos θ−R(ϕ−θ)sin θ    v_(Sx) =R[(dϕ/dt)+cos θ(dθ/dt)+((dϕ/dt)−(dθ/dt))cos θ−(ϕ−θ)sin θ(dθ/dt)]  v_(Sx) =R[(dϕ/dt)(1+cos θ)−(ϕ−θ)sin θ(dθ/dt)]
$${rotation}\:{of}\:{cylinder}\:\varphi \\ $$$${rotation}\:{of}\:{rod}\:\theta \\ $$$${OC}={R}\varphi \\ $$$${PS}={R}\left(\varphi−\theta\right) \\ $$$${rod}\:{hits}\:{the}\:{ground}\:{if} \\ $$$$\left[\frac{{l}}{\mathrm{2}}+{R}\left(\varphi−\theta\right)\right]\mathrm{tan}\:\frac{\theta}{\mathrm{2}}={R} \\ $$$$ \\ $$$${x}_{{S}} ={R}\varphi+{R}\:\mathrm{sin}\:\theta+{R}\left(\varphi−\theta\right)\mathrm{cos}\:\theta \\ $$$${y}_{{S}} ={R}\:\mathrm{cos}\:\theta−{R}\left(\varphi−\theta\right)\mathrm{sin}\:\theta \\ $$$$ \\ $$$${v}_{{Sx}} ={R}\left[\frac{{d}\varphi}{{dt}}+\mathrm{cos}\:\theta\frac{{d}\theta}{{dt}}+\left(\frac{{d}\varphi}{{dt}}−\frac{{d}\theta}{{dt}}\right)\mathrm{cos}\:\theta−\left(\varphi−\theta\right)\mathrm{sin}\:\theta\frac{{d}\theta}{{dt}}\right] \\ $$$${v}_{{Sx}} ={R}\left[\frac{{d}\varphi}{{dt}}\left(\mathrm{1}+\mathrm{cos}\:\theta\right)−\left(\varphi−\theta\right)\mathrm{sin}\:\theta\frac{{d}\theta}{{dt}}\right] \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *