Menu Close

Question-91196




Question Number 91196 by ajfour last updated on 28/Apr/20
Commented by ajfour last updated on 28/Apr/20
The ball has to be dropped on  inciline so that it lands into  the box and y_P  be minimum.  Find x_P  in terms of b.
$${The}\:{ball}\:{has}\:{to}\:{be}\:{dropped}\:{on} \\ $$$${inciline}\:{so}\:{that}\:{it}\:{lands}\:{into} \\ $$$${the}\:{box}\:{and}\:{y}_{{P}} \:{be}\:{minimum}. \\ $$$${Find}\:{x}_{{P}} \:{in}\:{terms}\:{of}\:{b}. \\ $$
Answered by mr W last updated on 28/Apr/20
Commented by mr W last updated on 28/Apr/20
let x_P =−a  u=(√(2g(y_P −a)))  a=(1/2)g(((a+b)/u))^2 =(((a+b)^2 )/(4(y_P −a)))  y_P =a+(((a+b)^2 )/(4a))  (dy_P /da)=1+(((a+b))/(2a))−(((a+b)^2 )/(4a^2 ))=0  5a^2 −b^2 =0  ⇒a=(b/( (√5)))  i.e. x_P =−(b/( (√5)))
$${let}\:{x}_{{P}} =−{a} \\ $$$${u}=\sqrt{\mathrm{2}{g}\left({y}_{{P}} −{a}\right)} \\ $$$${a}=\frac{\mathrm{1}}{\mathrm{2}}{g}\left(\frac{{a}+{b}}{{u}}\right)^{\mathrm{2}} =\frac{\left({a}+{b}\right)^{\mathrm{2}} }{\mathrm{4}\left({y}_{{P}} −{a}\right)} \\ $$$${y}_{{P}} ={a}+\frac{\left({a}+{b}\right)^{\mathrm{2}} }{\mathrm{4}{a}} \\ $$$$\frac{{dy}_{{P}} }{{da}}=\mathrm{1}+\frac{\left({a}+{b}\right)}{\mathrm{2}{a}}−\frac{\left({a}+{b}\right)^{\mathrm{2}} }{\mathrm{4}{a}^{\mathrm{2}} }=\mathrm{0} \\ $$$$\mathrm{5}{a}^{\mathrm{2}} −{b}^{\mathrm{2}} =\mathrm{0} \\ $$$$\Rightarrow{a}=\frac{{b}}{\:\sqrt{\mathrm{5}}} \\ $$$${i}.{e}.\:{x}_{{P}} =−\frac{{b}}{\:\sqrt{\mathrm{5}}} \\ $$
Commented by ajfour last updated on 28/Apr/20
i think you got  a=b(2+(√5))  , Sir  {(((a+b)/(2a)))+(1/2)}^2 =(((√5)/2))^2
$${i}\:{think}\:{you}\:{got} \\ $$$${a}={b}\left(\mathrm{2}+\sqrt{\mathrm{5}}\right)\:\:,\:{Sir} \\ $$$$\left\{\left(\frac{{a}+{b}}{\mathrm{2}{a}}\right)+\frac{\mathrm{1}}{\mathrm{2}}\right\}^{\mathrm{2}} =\left(\frac{\sqrt{\mathrm{5}}}{\mathrm{2}}\right)^{\mathrm{2}} \\ $$$$ \\ $$
Commented by mr W last updated on 28/Apr/20
no. i think a=(b/( (√5))) is correct sir.  {(((a+b)/(2a)))−(1/2)}^2 =(((√5)/2))^2
$${no}.\:{i}\:{think}\:{a}=\frac{{b}}{\:\sqrt{\mathrm{5}}}\:{is}\:{correct}\:{sir}. \\ $$$$\left\{\left(\frac{{a}+{b}}{\mathrm{2}{a}}\right)−\frac{\mathrm{1}}{\mathrm{2}}\right\}^{\mathrm{2}} =\left(\frac{\sqrt{\mathrm{5}}}{\mathrm{2}}\right)^{\mathrm{2}} \\ $$
Commented by ajfour last updated on 28/Apr/20
yes sir, really, and you   have solved it very wisely, Sir!
$${yes}\:{sir},\:{really},\:{and}\:{you}\: \\ $$$${have}\:{solved}\:{it}\:{very}\:{wisely},\:{Sir}! \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *