Question Number 91302 by 174 last updated on 29/Apr/20
Answered by MJS last updated on 29/Apr/20
$$\int\mathrm{e}^{{x}} \frac{\left({x}−\mathrm{1}\right)^{\mathrm{2}} }{\left({x}^{\mathrm{2}} +\mathrm{1}\right)^{\mathrm{2}} }{dx}= \\ $$$$=\int\frac{\mathrm{e}^{{x}} }{{x}^{\mathrm{2}} +\mathrm{1}}{dx}−\mathrm{2}\int\frac{\mathrm{e}^{{x}} {x}}{\left({x}^{\mathrm{2}} +\mathrm{1}\right)^{\mathrm{2}} }{dx} \\ $$$$\mathrm{the}\:\mathrm{2}^{\mathrm{nd}} \:\mathrm{one}\:\mathrm{by}\:\mathrm{parts}: \\ $$$$−\mathrm{2}\int\frac{\mathrm{e}^{{x}} {x}}{\left({x}^{\mathrm{2}} +\mathrm{1}\right)^{\mathrm{2}} }{dx}= \\ $$$$\:\:\:\:\:{u}'=\frac{{x}}{\left({x}^{\mathrm{2}} +\mathrm{1}\right)^{\mathrm{2}} }\:\rightarrow\:{u}=−\frac{\mathrm{1}}{\mathrm{2}\left({x}^{\mathrm{2}} +\mathrm{1}\right)} \\ $$$$\:\:\:\:\:{v}={v}'=\mathrm{e}^{{x}} \\ $$$$=\frac{\mathrm{e}^{{x}} }{{x}^{\mathrm{2}} +\mathrm{1}}−\int\frac{\mathrm{e}^{{x}} }{{x}^{\mathrm{2}} +\mathrm{1}}{dx} \\ $$$$\mathrm{so}\:\mathrm{we}\:\mathrm{have} \\ $$$$\int\frac{\mathrm{e}^{{x}} }{{x}^{\mathrm{2}} +\mathrm{1}}{dx}+\frac{\mathrm{e}^{{x}} }{{x}^{\mathrm{2}} +\mathrm{1}}−\int\frac{\mathrm{e}^{{x}} }{{x}^{\mathrm{2}} +\mathrm{1}}{dx}= \\ $$$$=\frac{\mathrm{e}^{{x}} }{{x}^{\mathrm{2}} +\mathrm{1}}+\mathrm{C} \\ $$
Answered by $@ty@m123 last updated on 29/Apr/20
$${Formula}: \\ $$$$\int{e}^{{x}} \left\{{f}\left({x}\right)+{f}\:'\left({x}\right)\right\}{dx}={e}^{{x}} {f}\left({x}\right)+\mathrm{C} \\ $$$${Here}, \\ $$$${f}\left({x}\right)=\frac{\mathrm{1}}{\mathrm{1}+{x}^{\mathrm{2}} } \\ $$