Question Number 91303 by 174 last updated on 29/Apr/20
Commented by mathmax by abdo last updated on 29/Apr/20
$${A}\:=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {ln}\left(\mathrm{1}+{cos}^{\mathrm{2}} \left(\mathrm{2}{x}\right)\right){dx}\:\Rightarrow{A}\:=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {ln}\left(\mathrm{1}+\frac{\mathrm{1}+{cos}\left(\mathrm{4}{x}\right)}{\mathrm{2}}\right){dx} \\ $$$$=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {ln}\left(\mathrm{3}+{cos}\left(\mathrm{4}{x}\right)\right){dx}−\frac{\pi}{\mathrm{2}}{ln}\left(\mathrm{2}\right)\:{we}\:{have} \\ $$$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {ln}\left(\mathrm{3}+{cos}\left(\mathrm{4}{x}\right)\right){dx}\:=\frac{\pi}{\mathrm{2}}{ln}\left(\mathrm{3}\right)+\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {ln}\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{3}}{cos}\left(\mathrm{4}{x}\right)\right){dx}\:\:\left(\mathrm{4}{x}={t}\right) \\ $$$$=\frac{\pi}{\mathrm{2}}{ln}\left(\mathrm{3}\right)\:+\frac{\mathrm{1}}{\mathrm{4}}\int_{\mathrm{0}} ^{\pi} {ln}\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{3}}{cost}\right)\:\Rightarrow \\ $$$${A}\:=\frac{\pi}{\mathrm{2}}{ln}\left(\mathrm{3}\right)−\frac{\pi}{\mathrm{2}}{ln}\left(\mathrm{2}\right)\:+\frac{\mathrm{1}}{\mathrm{4}}\int_{\mathrm{0}} ^{\pi} {ln}\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{3}}{cost}\right){dt}\:{let} \\ $$$${f}\left({a}\right)\:=\int_{\mathrm{0}} ^{\pi} {ln}\left(\mathrm{1}+{acost}\right){dt}\:\:\:{with}\:\mathrm{0}<{a}<\mathrm{1} \\ $$$${we}\:{have}\:{f}^{'} \left({a}\right)\:=\int_{\mathrm{0}} ^{\pi} \:\:\frac{{cost}}{\mathrm{1}+{acost}}{dt}\:=\frac{\mathrm{1}}{{a}}\int_{\mathrm{0}} ^{\pi} \:\frac{\mathrm{1}+{acost}−\mathrm{1}}{\mathrm{1}+{acost}}{dt} \\ $$$$=\frac{\pi}{{a}}−\frac{\mathrm{1}}{{a}}\:\int_{\mathrm{0}} ^{\pi} \:\frac{{dt}}{\mathrm{1}+{acost}}\:\:{we}\:{have}\: \\ $$$$\int_{\mathrm{0}} ^{\pi} \:\frac{{dt}}{\mathrm{1}+{acost}}\:=_{{tan}\left(\frac{{t}}{\mathrm{2}}\right)={u}} \:\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{\mathrm{2}{du}}{\left(\mathrm{1}+{u}^{\mathrm{2}} \right)\left(\mathrm{1}+{a}×\frac{\mathrm{1}−{u}^{\mathrm{2}} }{\mathrm{1}+{u}^{\mathrm{2}} }\right)} \\ $$$$=\int_{\mathrm{0}} ^{\infty} \:\:\frac{\mathrm{2}{du}}{\mathrm{1}+{u}^{\mathrm{2}} +{a}−{au}^{\mathrm{2}} }\:=\int_{\mathrm{0}} ^{\infty} \:\:\frac{\mathrm{2}{du}}{\left(\mathrm{1}−{a}\right){u}^{\mathrm{2}} \:+\mathrm{1}+{a}}=\frac{\mathrm{2}}{\mathrm{1}−{a}}\int_{\mathrm{0}} ^{\infty} \frac{{du}}{{u}^{\mathrm{2}} \:+\frac{\mathrm{1}+{a}}{\mathrm{1}−{a}}} \\ $$$$=_{{u}=\sqrt{\frac{\mathrm{1}+{a}}{\mathrm{1}−{a}}}{z}} \:\:\:\:\frac{\mathrm{2}}{\mathrm{1}−{a}}\int_{\mathrm{0}} ^{\infty} \:\:\frac{\mathrm{1}}{\frac{\mathrm{1}+{a}}{\mathrm{1}−{a}}\left(\mathrm{1}+{z}^{\mathrm{2}} \right)}×\sqrt{\frac{\mathrm{1}+{a}}{\mathrm{1}−{a}}}{dz} \\ $$$$=\frac{\mathrm{2}}{\:\sqrt{\mathrm{1}−{a}^{\mathrm{2}} }}\int_{\mathrm{0}} ^{\infty} \frac{{dz}}{\mathrm{1}+{z}^{\mathrm{2}} }\:=\frac{\mathrm{2}}{\:\sqrt{\mathrm{1}−{a}^{\mathrm{2}} }}×\frac{\pi}{\mathrm{2}}\:=\frac{\pi}{\:\sqrt{\mathrm{1}−{a}^{\mathrm{2}} }}\:\Rightarrow \\ $$$${f}^{'} \left({a}\right)\:=\frac{\pi}{{a}}−\frac{\pi}{{a}\sqrt{\mathrm{1}−{a}^{\mathrm{2}} }}\:\Rightarrow{f}\left({a}\right)\:=\pi{ln}\left({a}\right)−\pi\:\int\:\:\:\frac{{da}}{{a}\sqrt{\mathrm{1}−{a}^{\mathrm{2}} }}\:+{c} \\ $$$$\int\:\:\frac{{da}}{{a}\sqrt{\mathrm{1}−{a}^{\mathrm{2}} }}\:=_{{a}\:={sinx}} \:\:\:\int\:\:\frac{{cosxdx}}{{sinx}×{cosx}}\:=\int\frac{{dx}}{{sinx}} \\ $$$$=_{{tan}\left(\frac{{x}}{\mathrm{2}}\right)={u}} \:\:\:\:\int\:\frac{\mathrm{2}{du}}{\left(\mathrm{1}+{u}^{\mathrm{2}} \right)×\frac{\mathrm{2}{u}}{\mathrm{1}+{u}^{\mathrm{2}} }}\:=\int\frac{{du}}{{u}}\:={ln}\mid{u}\mid={ln}\mid{tan}\left(\frac{{x}}{\mathrm{2}}\right)\mid \\ $$$$={ln}\mid{tan}\left(\frac{\mathrm{1}}{\mathrm{2}}{arcsina}\right)\mid\:\Rightarrow \\ $$$${f}\left({a}\right)\:=\pi{ln}\left({a}\right)−\pi{ln}\mid{tan}\left(\frac{\mathrm{1}}{\mathrm{2}}{arcsina}\right)\mid\:+{c} \\ $$$${f}\left({a}\right)\:=\pi{ln}\left(\frac{{a}}{\mid{tan}\left(\frac{\mathrm{1}}{\mathrm{2}}{arcsina}\right)\mid}\right)\:+{c} \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}{arcsina}\:\sim\frac{{a}}{\mathrm{2}}\:\Rightarrow{tan}\left(\frac{{arcsina}}{\mathrm{2}}\right)\sim\frac{{a}}{\mathrm{2}}\:\Rightarrow{f}\left({a}\right)\:\sim\pi{ln}\left(\mathrm{2}\right)+{c}\:\left({a}\sim\mathrm{0}\right) \\ $$$$\Rightarrow{lim}_{{a}\rightarrow\mathrm{0}} {f}\left({a}\right)\:=\mathrm{0}\:=\pi{ln}\left(\mathrm{2}\right)+{c}\:\Rightarrow{c}\:=−\pi{ln}\left(\mathrm{2}\right)\:\Rightarrow \\ $$$${f}\left({a}\right)\:=\pi{ln}\left({a}\right)−\pi{ln}\left(\mathrm{2}\right)−\pi{ln}\mid{tan}\left(\frac{\mathrm{1}}{\mathrm{2}}{arcsina}\right)\mid\:{so} \\ $$$$\int_{\mathrm{0}} ^{\pi} {ln}\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{3}}{cost}\right){dt}\:={f}\left(\frac{\mathrm{1}}{\mathrm{3}}\right)=−\pi{ln}\left(\mathrm{3}\right)−\pi{ln}\left(\mathrm{2}\right) \\ $$$$−\pi{ln}\mid{tan}\left(\frac{\mathrm{1}}{\mathrm{2}}{arcsin}\left(\frac{\mathrm{1}}{\mathrm{3}}\right)\mid\:\Rightarrow\right. \\ $$$${A}\:=\frac{\pi}{\mathrm{2}}{ln}\left(\mathrm{3}\right)−\frac{\pi}{\mathrm{2}}{ln}\left(\mathrm{2}\right)−\frac{\pi}{\mathrm{4}}{ln}\left(\mathrm{3}\right)−\frac{\pi}{\mathrm{4}}{ln}\left(\mathrm{2}\right)−\frac{\pi}{\mathrm{4}}{ln}\mid{tan}\left(\frac{\mathrm{1}}{\mathrm{2}}{arcsin}\left(\frac{\mathrm{1}}{\mathrm{3}}\right)\mid\right. \\ $$$${A}\:=\frac{\pi}{\mathrm{4}}{ln}\left(\mathrm{3}\right)−\frac{\mathrm{3}\pi}{\mathrm{4}}{ln}\left(\mathrm{2}\right)−\frac{\pi}{\mathrm{4}}{ln}\mid{tan}\left(\frac{\mathrm{1}}{\mathrm{2}}{arcsin}\left(\frac{\mathrm{1}}{\mathrm{3}}\right)\mid\right. \\ $$
Commented by 174 last updated on 30/Apr/20
thanks alot
Commented by mathmax by abdo last updated on 30/Apr/20
$${you}\:{are}\:{welcome} \\ $$