Menu Close

Question-91624




Question Number 91624 by john santu last updated on 02/May/20
Commented by john santu last updated on 02/May/20
what the answer?
$${what}\:{the}\:{answer}? \\ $$
Commented by arcana last updated on 02/May/20
f ′ (0)= lim_(h→0)  ((f(h)−f(0))/h)  ⇒f ′ (0)≈ ((f(h)−f(0))/h)  hke^(k0) ≈f(h)−1    f(h)≈1+hk
$${f}\:'\:\left(\mathrm{0}\right)=\:\underset{{h}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{{f}\left({h}\right)−{f}\left(\mathrm{0}\right)}{{h}} \\ $$$$\Rightarrow{f}\:'\:\left(\mathrm{0}\right)\approx\:\frac{{f}\left({h}\right)−{f}\left(\mathrm{0}\right)}{{h}} \\ $$$${hke}^{{k}\mathrm{0}} \approx{f}\left({h}\right)−\mathrm{1} \\ $$$$ \\ $$$${f}\left({h}\right)\approx\mathrm{1}+{hk} \\ $$
Commented by mathmax by abdo last updated on 02/May/20
f(h)∼f^′ (0)h+f(0)  we have f(x)=e^(kx)  ⇒f^′ (x)=ke^(kx)  ⇒  f^′ (0) =k   also f(0) =1 ⇒f(h) ∼kh +1  correct answer is D
$${f}\left({h}\right)\sim{f}^{'} \left(\mathrm{0}\right){h}+{f}\left(\mathrm{0}\right)\:\:{we}\:{have}\:{f}\left({x}\right)={e}^{{kx}} \:\Rightarrow{f}^{'} \left({x}\right)={ke}^{{kx}} \:\Rightarrow \\ $$$${f}^{'} \left(\mathrm{0}\right)\:={k}\:\:\:{also}\:{f}\left(\mathrm{0}\right)\:=\mathrm{1}\:\Rightarrow{f}\left({h}\right)\:\sim{kh}\:+\mathrm{1} \\ $$$${correct}\:{answer}\:{is}\:{D} \\ $$
Commented by john santu last updated on 02/May/20
yes. i got same result
$${yes}.\:{i}\:{got}\:{same}\:{result}\: \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *