Menu Close

Question-91660




Question Number 91660 by Zainal Arifin last updated on 02/May/20
Commented by Prithwish Sen 1 last updated on 02/May/20
LHS  (√((10+2(√(21)))/2)) + (√((16+2(√(55)))/2))  = (((√7)+(√3))/( (√2))) + (((√5)+(√(11)))/( (√2)))    considering only the positive value  =(((√3)+(√(11))+(√7)+(√5))/( (√2))) = (((√3)+(√(11)))/( (√2))) +(((√7)+(√5))/( (√2)))  = (√((((√3)+(√(11)^2 )))/2)) +(√((((√7)+(√5))^2 )/2))  = (√(7+(√(33)))) + (√(6+(√(35))))   RHS   proved
$$\mathrm{LHS} \\ $$$$\sqrt{\frac{\mathrm{10}+\mathrm{2}\sqrt{\mathrm{21}}}{\mathrm{2}}}\:+\:\sqrt{\frac{\mathrm{16}+\mathrm{2}\sqrt{\mathrm{55}}}{\mathrm{2}}} \\ $$$$=\:\frac{\sqrt{\mathrm{7}}+\sqrt{\mathrm{3}}}{\:\sqrt{\mathrm{2}}}\:+\:\frac{\sqrt{\mathrm{5}}+\sqrt{\mathrm{11}}}{\:\sqrt{\mathrm{2}}}\:\:\:\:\boldsymbol{\mathrm{considering}}\:\boldsymbol{\mathrm{only}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{positive}}\:\boldsymbol{\mathrm{value}} \\ $$$$=\frac{\sqrt{\mathrm{3}}+\sqrt{\mathrm{11}}+\sqrt{\mathrm{7}}+\sqrt{\mathrm{5}}}{\:\sqrt{\mathrm{2}}}\:=\:\frac{\sqrt{\mathrm{3}}+\sqrt{\mathrm{11}}}{\:\sqrt{\mathrm{2}}}\:+\frac{\sqrt{\mathrm{7}}+\sqrt{\mathrm{5}}}{\:\sqrt{\mathrm{2}}} \\ $$$$=\:\sqrt{\frac{\left(\sqrt{\mathrm{3}}+\sqrt{\left.\mathrm{11}\right)^{\mathrm{2}} }\right.}{\mathrm{2}}}\:+\sqrt{\frac{\left(\sqrt{\mathrm{7}}+\sqrt{\mathrm{5}}\right)^{\mathrm{2}} }{\mathrm{2}}} \\ $$$$=\:\sqrt{\mathrm{7}+\sqrt{\mathrm{33}}}\:+\:\sqrt{\mathrm{6}+\sqrt{\mathrm{35}}}\:\:\:\boldsymbol{\mathrm{RHS}}\:\:\:\boldsymbol{\mathrm{proved}} \\ $$
Commented by jagoll last updated on 02/May/20
4) (√(1+(√(1+(√(1+(√(1+(√(...)))))))))) = p,p>0  ⇒1+p = p^2   p^2 −p−1=0 ⇒p = ((1 + (√5))/2)
$$\left.\mathrm{4}\right)\:\sqrt{\mathrm{1}+\sqrt{\mathrm{1}+\sqrt{\mathrm{1}+\sqrt{\mathrm{1}+\sqrt{…}}}}}\:=\:{p},{p}>\mathrm{0} \\ $$$$\Rightarrow\mathrm{1}+{p}\:=\:{p}^{\mathrm{2}} \\ $$$${p}^{\mathrm{2}} −{p}−\mathrm{1}=\mathrm{0}\:\Rightarrow{p}\:=\:\frac{\mathrm{1}\:+\:\sqrt{\mathrm{5}}}{\mathrm{2}} \\ $$$$ \\ $$
Commented by jagoll last updated on 02/May/20
3) x^2  = 2x ⇒x=2  y^2 −y−2=0 ⇒ y = 2  x×y = 4
$$\left.\mathrm{3}\right)\:{x}^{\mathrm{2}} \:=\:\mathrm{2}{x}\:\Rightarrow{x}=\mathrm{2} \\ $$$${y}^{\mathrm{2}} −{y}−\mathrm{2}=\mathrm{0}\:\Rightarrow\:{y}\:=\:\mathrm{2} \\ $$$${x}×{y}\:=\:\mathrm{4} \\ $$
Commented by john santu last updated on 02/May/20
5) 2x+4 ≤ −14 ∨ 2x+4 ≥ 14   x ≤ −9 ∨ x ≥ 5
$$\left.\mathrm{5}\right)\:\mathrm{2}{x}+\mathrm{4}\:\leqslant\:−\mathrm{14}\:\vee\:\mathrm{2}{x}+\mathrm{4}\:\geqslant\:\mathrm{14}\: \\ $$$${x}\:\leqslant\:−\mathrm{9}\:\vee\:{x}\:\geqslant\:\mathrm{5} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *