Menu Close

Question-91850




Question Number 91850 by Power last updated on 03/May/20
Commented by mr W last updated on 03/May/20
you are back! the same questions seem  to be back too...
$${you}\:{are}\:{back}!\:{the}\:{same}\:{questions}\:{seem} \\ $$$${to}\:{be}\:{back}\:{too}… \\ $$
Commented by mr W last updated on 03/May/20
=(a_1 /(1−q))=(1/(1+(1/2)))=(2/3)
$$=\frac{{a}_{\mathrm{1}} }{\mathrm{1}−{q}}=\frac{\mathrm{1}}{\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}}}=\frac{\mathrm{2}}{\mathrm{3}} \\ $$
Commented by mathmax by abdo last updated on 03/May/20
S =Σ_(n=1) ^∞   (−1)^(n−1) ×(1/2^(n−1) ) =Σ_(n=0) ^∞  (((−1)^n )/2^n ) =Σ_(n=0) ^∞ (−(1/2))^n   =(1/(1−(−(1/2)))) =(1/(3/2)) =(2/3)
$${S}\:=\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\left(−\mathrm{1}\right)^{{n}−\mathrm{1}} ×\frac{\mathrm{1}}{\mathrm{2}^{{n}−\mathrm{1}} }\:=\sum_{{n}=\mathrm{0}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{{n}} }{\mathrm{2}^{{n}} }\:=\sum_{{n}=\mathrm{0}} ^{\infty} \left(−\frac{\mathrm{1}}{\mathrm{2}}\right)^{{n}} \\ $$$$=\frac{\mathrm{1}}{\mathrm{1}−\left(−\frac{\mathrm{1}}{\mathrm{2}}\right)}\:=\frac{\mathrm{1}}{\frac{\mathrm{3}}{\mathrm{2}}}\:=\frac{\mathrm{2}}{\mathrm{3}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *