Menu Close

Question-92114




Question Number 92114 by mhmd last updated on 04/May/20
Answered by mr W last updated on 05/May/20
u=y′  u(du/dy)+3y^2 u=0  ⇒u=0 ⇒(dy/dx)=0 ⇒y=C  ⇒(du/dy)+3y^2 =0 ⇒u=−(y^3 −C^3 )  ⇒(dy/dx)=−(y^3 −C^3 )  ⇒(dy/(y^3 −C^3 ))=−dx  ⇒∫(dy/(y^3 −C^3 ))=−x  ⇒(1/(3C^2 ))∫((1/(y−C))−((y+2C)/(y^2 +Cy+C^2 )))dy=−x  ⇒(1/(3C^2 ))∫((1/(y−C))−(1/2)×((2y+C)/(y^2 +Cy+C^2 ))−((3C)/2)×(1/(y^2 +Cy+C^2 )))dy=−x  ... this should be easy   ⇒x+(1/(6C^2 ))ln ∣(((y−C)^2 )/(y^2 +Cy+C^2 ))∣−(1/( (√3)C^2 ))tan^(−1) ((2y+C)/( (√3)C))+C_1 =0
$${u}={y}' \\ $$$${u}\frac{{du}}{{dy}}+\mathrm{3}{y}^{\mathrm{2}} {u}=\mathrm{0} \\ $$$$\Rightarrow{u}=\mathrm{0}\:\Rightarrow\frac{{dy}}{{dx}}=\mathrm{0}\:\Rightarrow{y}={C} \\ $$$$\Rightarrow\frac{{du}}{{dy}}+\mathrm{3}{y}^{\mathrm{2}} =\mathrm{0}\:\Rightarrow{u}=−\left({y}^{\mathrm{3}} −{C}^{\mathrm{3}} \right) \\ $$$$\Rightarrow\frac{{dy}}{{dx}}=−\left({y}^{\mathrm{3}} −{C}^{\mathrm{3}} \right) \\ $$$$\Rightarrow\frac{{dy}}{{y}^{\mathrm{3}} −{C}^{\mathrm{3}} }=−{dx} \\ $$$$\Rightarrow\int\frac{{dy}}{{y}^{\mathrm{3}} −{C}^{\mathrm{3}} }=−{x} \\ $$$$\Rightarrow\frac{\mathrm{1}}{\mathrm{3}{C}^{\mathrm{2}} }\int\left(\frac{\mathrm{1}}{{y}−{C}}−\frac{{y}+\mathrm{2}{C}}{{y}^{\mathrm{2}} +{Cy}+{C}^{\mathrm{2}} }\right){dy}=−{x} \\ $$$$\Rightarrow\frac{\mathrm{1}}{\mathrm{3}{C}^{\mathrm{2}} }\int\left(\frac{\mathrm{1}}{{y}−{C}}−\frac{\mathrm{1}}{\mathrm{2}}×\frac{\mathrm{2}{y}+{C}}{{y}^{\mathrm{2}} +{Cy}+{C}^{\mathrm{2}} }−\frac{\mathrm{3}{C}}{\mathrm{2}}×\frac{\mathrm{1}}{{y}^{\mathrm{2}} +{Cy}+{C}^{\mathrm{2}} }\right){dy}=−{x} \\ $$$$…\:{this}\:{should}\:{be}\:{easy}\: \\ $$$$\Rightarrow{x}+\frac{\mathrm{1}}{\mathrm{6}{C}^{\mathrm{2}} }\mathrm{ln}\:\mid\frac{\left({y}−{C}\right)^{\mathrm{2}} }{{y}^{\mathrm{2}} +{Cy}+{C}^{\mathrm{2}} }\mid−\frac{\mathrm{1}}{\:\sqrt{\mathrm{3}}{C}^{\mathrm{2}} }\mathrm{tan}^{−\mathrm{1}} \frac{\mathrm{2}{y}+{C}}{\:\sqrt{\mathrm{3}}{C}}+{C}_{\mathrm{1}} =\mathrm{0} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *