Menu Close

Question-92269




Question Number 92269 by Power last updated on 05/May/20
Answered by mr W last updated on 05/May/20
let BD=1  ((AB)/(sin 51))=((BD)/(sin (25+51)))  ⇒AB=((sin 51)/(sin 76))  ((BC)/(sin 99))=((BD)/(sin (15+99)))  ⇒BC=((sin 99)/(sin 114))  AC^2 =(((sin 51)/(sin 76)))^2 +(((sin 99)/(sin 114)))^2 −2(((sin 51)/(sin 76)))(((sin 99)/(sin 114)))cos (24+15)  AC≈0.681  BF/AC≈1.467  ((sin x)/(BC))=((sin (24+15))/(AC))  sin x=((sin 99)/(sin 114))×((sin 39)/(AC))=1  ⇒x=90°
$${let}\:{BD}=\mathrm{1} \\ $$$$\frac{{AB}}{\mathrm{sin}\:\mathrm{51}}=\frac{{BD}}{\mathrm{sin}\:\left(\mathrm{25}+\mathrm{51}\right)} \\ $$$$\Rightarrow{AB}=\frac{\mathrm{sin}\:\mathrm{51}}{\mathrm{sin}\:\mathrm{76}} \\ $$$$\frac{{BC}}{\mathrm{sin}\:\mathrm{99}}=\frac{{BD}}{\mathrm{sin}\:\left(\mathrm{15}+\mathrm{99}\right)} \\ $$$$\Rightarrow{BC}=\frac{\mathrm{sin}\:\mathrm{99}}{\mathrm{sin}\:\mathrm{114}} \\ $$$${AC}^{\mathrm{2}} =\left(\frac{\mathrm{sin}\:\mathrm{51}}{\mathrm{sin}\:\mathrm{76}}\right)^{\mathrm{2}} +\left(\frac{\mathrm{sin}\:\mathrm{99}}{\mathrm{sin}\:\mathrm{114}}\right)^{\mathrm{2}} −\mathrm{2}\left(\frac{\mathrm{sin}\:\mathrm{51}}{\mathrm{sin}\:\mathrm{76}}\right)\left(\frac{\mathrm{sin}\:\mathrm{99}}{\mathrm{sin}\:\mathrm{114}}\right)\mathrm{cos}\:\left(\mathrm{24}+\mathrm{15}\right) \\ $$$${AC}\approx\mathrm{0}.\mathrm{681} \\ $$$${BF}/{AC}\approx\mathrm{1}.\mathrm{467} \\ $$$$\frac{\mathrm{sin}\:{x}}{{BC}}=\frac{\mathrm{sin}\:\left(\mathrm{24}+\mathrm{15}\right)}{{AC}} \\ $$$$\mathrm{sin}\:{x}=\frac{\mathrm{sin}\:\mathrm{99}}{\mathrm{sin}\:\mathrm{114}}×\frac{\mathrm{sin}\:\mathrm{39}}{{AC}}=\mathrm{1} \\ $$$$\Rightarrow{x}=\mathrm{90}° \\ $$
Commented by Power last updated on 05/May/20
thanks
$$\mathrm{thanks} \\ $$
Commented by otchereabdullai@gmail.com last updated on 05/May/20
powerful
$$\mathrm{powerful} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *