Question Number 92717 by mr W last updated on 08/May/20
Commented by i jagooll last updated on 09/May/20
$$\left(\mathrm{1}\right)\:\mathrm{x}^{\mathrm{3}} +\mathrm{9x}^{\mathrm{2}} \mathrm{y}\:=\:\mathrm{10} \\ $$$$\left(\mathrm{2}\right)\:\mathrm{27y}^{\mathrm{3}} +\mathrm{27xy}^{\mathrm{2}} \:=\:\mathrm{54} \\ $$$$\left(\mathrm{1}\right)+\left(\mathrm{2}\right) \\ $$$$\mathrm{x}^{\mathrm{3}} +\mathrm{9x}^{\mathrm{2}} \mathrm{y}+\mathrm{27xy}^{\mathrm{2}} +\mathrm{27y}^{\mathrm{3}} =\mathrm{64} \\ $$$$\left(\mathrm{x}+\mathrm{3y}\right)^{\mathrm{3}} =\mathrm{4}^{\mathrm{3}} \:\Rightarrow\mathrm{x}+\mathrm{3y}=\mathrm{4} \\ $$$$\mathrm{x}\:=\:\mathrm{4}−\mathrm{3y} \\ $$$$\Rightarrow\mathrm{y}^{\mathrm{3}} +\left(\mathrm{4}−\mathrm{3y}\right)\mathrm{y}^{\mathrm{2}} =\mathrm{2} \\ $$$$−\mathrm{2y}^{\mathrm{3}} +\mathrm{4y}^{\mathrm{2}} −\mathrm{2}=\mathrm{0} \\ $$$$\mathrm{y}^{\mathrm{3}} −\mathrm{2y}^{\mathrm{2}} +\mathrm{1}=\mathrm{0} \\ $$$$\left(\mathrm{y}−\mathrm{1}\right)\left(\mathrm{y}^{\mathrm{2}} −\mathrm{y}−\mathrm{1}\right)=\mathrm{0} \\ $$$$\mathrm{y}=\mathrm{1}\:\Rightarrow\mathrm{x}\:=\:\mathrm{1} \\ $$$$\mathrm{y}=\:\frac{\mathrm{1}\pm\:\sqrt{\mathrm{5}}}{\mathrm{2}}\:\Rightarrow\:\mathrm{x}=\mathrm{4}−\left(\frac{\mathrm{3}\pm\mathrm{3}\sqrt{\mathrm{5}}}{\mathrm{2}}\right) \\ $$$$\mathrm{x}=\:\frac{\mathrm{5}\:\mp\:\mathrm{3}\sqrt{\mathrm{5}}}{\mathrm{2}}\: \\ $$
Commented by mr W last updated on 09/May/20
$${result}\:{not}\:{correct}\:{sir},\:{i}\:{got}: \\ $$$${x}=\mathrm{4}−\mathrm{3}{y} \\ $$$${y}^{\mathrm{3}} +\left(\mathrm{4}−\mathrm{3}{y}\right){y}^{\mathrm{2}} =\mathrm{2} \\ $$$${y}^{\mathrm{3}} −\mathrm{2}{y}^{\mathrm{2}} +\mathrm{1}=\mathrm{0} \\ $$$${y}^{\mathrm{3}} −{y}^{\mathrm{2}} −{y}^{\mathrm{2}} +{y}−{y}+\mathrm{1}=\mathrm{0} \\ $$$$\left({y}−\mathrm{1}\right){y}^{\mathrm{2}} −\left({y}−\mathrm{1}\right){y}−\left({y}−\mathrm{1}\right)=\mathrm{0} \\ $$$$\left({y}−\mathrm{1}\right)\left({y}^{\mathrm{2}} −{y}−\mathrm{1}\right)=\mathrm{0} \\ $$$${y}=\mathrm{1}\Rightarrow{x}=\mathrm{1} \\ $$$${y}=\frac{\mathrm{1}\pm\sqrt{\mathrm{5}}}{\mathrm{2}}\Rightarrow{x}=\frac{\mathrm{5}\mp\mathrm{3}\sqrt{\mathrm{5}}}{\mathrm{2}} \\ $$
Commented by i jagooll last updated on 09/May/20
$$\mathrm{dear}\:\mathrm{Mr}\:\mathrm{W}.\:\mathrm{it}\:\mathrm{correct}? \\ $$
Commented by i jagooll last updated on 09/May/20
$$\mathrm{o}\:\mathrm{yes}\:\mathrm{sir}.\:\mathrm{i}\:\mathrm{typo}\: \\ $$
Commented by john santu last updated on 09/May/20
greeatm..
Answered by Rasheed.Sindhi last updated on 08/May/20
$${x}^{\mathrm{2}} \left({x}+\mathrm{9}{y}\right)=\mathrm{10} \\ $$$${y}^{\mathrm{2}} \left({x}+{y}\right)=\mathrm{2} \\ $$$$\frac{{x}^{\mathrm{2}} }{{y}^{\mathrm{2}} }×\left(\mathrm{1}+\frac{\mathrm{8}{y}}{{x}+{y}}\right)=\mathrm{5} \\ $$$$\left(\frac{{x}}{{y}}\right)^{\mathrm{2}} \left(\mathrm{1}+\frac{\mathrm{1}}{\frac{{x}+{y}}{\mathrm{8}{y}}}\right)=\mathrm{5} \\ $$$$\left(\frac{{x}}{{y}}\right)^{\mathrm{2}} \left(\mathrm{1}+\frac{\mathrm{1}}{\frac{\mathrm{1}}{\mathrm{8}}\left(\frac{{x}}{{y}}\right)+\frac{\mathrm{1}}{\mathrm{8}}}\right)=\mathrm{5} \\ $$$${u}^{\mathrm{2}} \left(\mathrm{1}+\frac{\mathrm{1}}{\left(\mathrm{1}/\mathrm{8}\right)\left({u}+\mathrm{1}\right)}\right)=\mathrm{5} \\ $$$${u}^{\mathrm{2}} \left(\frac{\left(\mathrm{1}/\mathrm{8}\right)\left({u}+\mathrm{1}\right)+\mathrm{1}}{\left(\mathrm{1}/\mathrm{8}\right)\left({u}+\mathrm{1}\right)}\right)=\mathrm{5} \\ $$$$ \\ $$$$\left(\mathrm{1}/\mathrm{8}\right){u}^{\mathrm{2}} \left({u}+\mathrm{1}\right)+{u}^{\mathrm{2}} =\left(\mathrm{5}/\mathrm{8}\right)\left({u}+\mathrm{1}\right) \\ $$$${u}^{\mathrm{2}} \left({u}+\mathrm{1}\right)+\mathrm{8}{u}^{\mathrm{2}} =\mathrm{5}\left({u}+\mathrm{1}\right) \\ $$$${u}^{\mathrm{3}} +\mathrm{9}{u}^{\mathrm{2}} −\mathrm{5}{u}−\mathrm{5}=\mathrm{0} \\ $$$${Don}'{t}\:{know}\:{to}\:{solve}\:{cubic}\:{equation}. \\ $$$$……… \\ $$$$….. \\ $$
Commented by Rio Michael last updated on 08/May/20
$$\mathrm{mind}\:\mathrm{if}\:\mathrm{i}\:\mathrm{continue}? \\ $$$${u}\:=\:\mathrm{1}\:\Rightarrow\:\left(\mathrm{1}\right)^{\mathrm{3}} \:+\:\mathrm{9}\left(\mathrm{1}\right)^{\mathrm{2}} \:−\mathrm{5}\left(\mathrm{1}\right)\:−\left(\mathrm{5}\right)\:=\:\mathrm{0} \\ $$$$\Rightarrow\:\mathrm{if}\:{f}\left({u}\right)\:=\:{u}^{\mathrm{3}} \:+\:\mathrm{9}{u}^{\mathrm{2}} −\mathrm{5}{u}−\mathrm{5} \\ $$$$\mathrm{then}\:{u}\:−\mathrm{1}\:\mathrm{is}\:\mathrm{a}\:\mathrm{factor}\:\mathrm{hence} \\ $$$${f}\left({u}\right)\:=\:\left({u}−\mathrm{1}\right)\left({u}+\mathrm{5}−\sqrt{\mathrm{20}}\:\right)\left({u}\:+\mathrm{5}\:+\:\sqrt{\mathrm{20}}\right)\: \\ $$$${u}\:=\:\mathrm{1}\:\mathrm{or}\:{u}\:=\:\sqrt{\mathrm{20}}\:−\:\mathrm{5}\:\mathrm{or}\:{u}\:=\:−\mathrm{5}−\sqrt{\mathrm{20}} \\ $$$$ \\ $$
Commented by mr W last updated on 08/May/20
$${thank}\:{you}\:{both}! \\ $$
Commented by Ar Brandon last updated on 09/May/20
I love this spirit. Keep up Men.
Commented by Rasheed.Sindhi last updated on 13/May/20
7ank5 5ir for encouraging!
Answered by $@ty@m123 last updated on 10/May/20
$$\frac{{x}^{\mathrm{3}} +\mathrm{9}{x}^{\mathrm{2}} {y}}{{y}^{\mathrm{3}} +{xy}^{\mathrm{2}} }=\mathrm{5} \\ $$$$\frac{\left(\frac{{x}}{{y}}\right)^{\mathrm{3}} +\mathrm{9}\left(\frac{{x}}{{y}}\right)^{\mathrm{2}} }{\mathrm{1}+\left(\frac{{x}}{{y}}\right)}=\mathrm{5} \\ $$$${t}^{\mathrm{3}} +\mathrm{9}{t}^{\mathrm{2}} −\mathrm{5}{t}−\mathrm{5}=\mathrm{0}\:\:\left\{{where}\:{t}=\frac{{x}}{{y}}\right. \\ $$$${t}^{\mathrm{3}} −{t}^{\mathrm{2}} +\mathrm{10}{t}^{\mathrm{2}} −\mathrm{10}{t}+\mathrm{5}{t}−\mathrm{5}=\mathrm{0} \\ $$$${t}^{\mathrm{2}} \left({t}−\mathrm{1}\right)+\mathrm{10}{t}\left({t}−\mathrm{1}\right)+\mathrm{5}\left({t}−\mathrm{1}\right)=\mathrm{0} \\ $$$$\left({t}−\mathrm{1}\right)\left({t}^{\mathrm{2}} +\mathrm{10}{t}+\mathrm{5}\right)=\mathrm{0} \\ $$$${t}=\mathrm{1},\:{t}=\frac{−\mathrm{10}\pm\sqrt{\mathrm{100}−\mathrm{20}}}{\mathrm{2}} \\ $$$${t}=\mathrm{1},\:{t}=−\mathrm{5}\pm\mathrm{2}\sqrt{\mathrm{5}} \\ $$$${Case}\:\mathrm{1}.\:{t}=\mathrm{1} \\ $$$${x}={y}=\mathrm{1}. \\ $$$${Case}\:\mathrm{2}.\:{t}=−\mathrm{5}+\mathrm{2}\sqrt{\mathrm{5}} \\ $$$$\Rightarrow{x}=\left(−\mathrm{5}+\mathrm{2}\sqrt{\mathrm{5}}\right){y} \\ $$$$\Rightarrow{y}^{\mathrm{3}} +\left(−\mathrm{5}+\mathrm{2}\sqrt{\mathrm{5}}\right){y}^{\mathrm{3}} =\mathrm{2} \\ $$$$\left(−\mathrm{4}+\mathrm{2}\sqrt{\mathrm{5}}\right){y}^{\mathrm{3}} =\mathrm{2} \\ $$$${y}^{\mathrm{3}} =\frac{\mathrm{1}}{−\mathrm{2}+\sqrt{\mathrm{5}}} \\ $$$${y}^{\mathrm{3}} =\frac{\mathrm{1}}{\:\sqrt{\mathrm{5}}−\mathrm{2}}×\frac{\sqrt{\mathrm{5}}+\mathrm{2}}{\:\sqrt{\mathrm{5}}+\mathrm{2}} \\ $$$$=\frac{\sqrt{\mathrm{5}}+\mathrm{2}}{\mathrm{5}−\mathrm{4}}=\sqrt{\mathrm{5}}+\mathrm{2} \\ $$$${y}=\left(\sqrt{\mathrm{5}}+\mathrm{2}\right)^{\frac{\mathrm{1}}{\mathrm{3}}} \\ $$$${x}=\left(−\mathrm{5}+\mathrm{2}\sqrt{\mathrm{5}}\right)\left(\sqrt{\mathrm{5}}+\mathrm{2}\right)^{\frac{\mathrm{1}}{\mathrm{3}}} \\ $$$${Case}\:\mathrm{3}.\:{t}=−\mathrm{5}−\mathrm{2}\sqrt{\mathrm{5}} \\ $$$$….. \\ $$$$….. \\ $$