Question Number 92723 by Power last updated on 08/May/20
Answered by Rio Michael last updated on 08/May/20
$$\int\frac{{dx}}{\:\sqrt{{x}^{\mathrm{2}} −\mathrm{4}}}\:\mathrm{let}\:{x}\:=\:\mathrm{2}\:\mathrm{sec}\:{u} \\ $$$$\Rightarrow\:\frac{{dx}}{{du}}\:=\:\mathrm{2}\:\mathrm{sec}\:{u}\:\mathrm{tan}\:{u} \\ $$$$\Rightarrow\:{dx}\:=\:\mathrm{2}\:\mathrm{sec}\:{u}\:\mathrm{tan}\:{u}\:{du} \\ $$$$\:\int\frac{{dx}}{\:\sqrt{{x}^{\mathrm{2}} −\mathrm{4}}}\:=\:\int\frac{\mathrm{2}\:\mathrm{sec}\:{u}\:\mathrm{tan}\:{u}\:{du}}{\:\sqrt{\left(\mathrm{2}\:\mathrm{sec}\:{u}\right)^{\mathrm{2}} −\:\mathrm{4}}}\:=\:\int\frac{\mathrm{2}\:\mathrm{sec}\:{u}\:\mathrm{tan}\:{u}\:{du}}{\:\sqrt{\mathrm{4}\:\mathrm{sec}^{\mathrm{2}} {u}\:−\mathrm{4}}} \\ $$$$\:=\:\int\frac{\mathrm{sec}\:{u}\:\mathrm{tan}\:{u}\:{du}}{\mathrm{tan}\:{u}}\:\:=\:\int\:\mathrm{sec}\:{u}\:{du}\:=\:\mathrm{ln}\mid\:\mathrm{sec}\:{u}\:+\:\mathrm{tan}\:{u}\mid\:+\:{C} \\ $$$$\mathrm{do}\:\mathrm{all}\:\mathrm{replacements}\:\mathrm{and}\:\mathrm{see}\:\mathrm{that} \\ $$$$\int\:\frac{{dx}}{\:\sqrt{{x}^{\mathrm{2}} −\mathrm{4}}}\:=\:\mathrm{ln}\mid\:{x}\:+\:\sqrt{{x}^{\mathrm{2}} −\mathrm{4}}\:\mid\:+\:{C} \\ $$
Commented by mathmax by abdo last updated on 08/May/20
$${I}=\int\:\:\:\frac{{dx}}{\:\sqrt{{x}^{\mathrm{2}} −\mathrm{4}}}\:\:{changement}\:{x}\:=\mathrm{2}{ch}\left({t}\right)\:{give} \\ $$$${I}\:=\int\:\frac{\mathrm{2}{sh}\left({t}\right)}{\mathrm{2}{sht}}{dt}\:=\mathrm{2}{t}\:+{c}\:\:{but}\:{t}\:={argch}\left(\frac{{x}}{\mathrm{2}}\right)={ln}\left(\frac{{x}}{\mathrm{2}}+\sqrt{\frac{{x}^{\mathrm{2}} }{\mathrm{4}}−\mathrm{1}}\right) \\ $$$$={ln}\left({x}+\sqrt{{x}^{\mathrm{2}} −\mathrm{4}}\right)−{ln}\left(\mathrm{2}\right)\:\:\Rightarrow \\ $$$${I}\:=\mathrm{2}{ln}\left({x}+\sqrt{{x}^{\mathrm{2}} −\mathrm{4}}\right)\:+{C} \\ $$