Menu Close

Question-92778




Question Number 92778 by unknown last updated on 09/May/20
Commented by prakash jain last updated on 09/May/20
⌊3x⌋−2−(⌊2x⌋−1)=2x−6  ⌊3x⌋−⌊2x⌋=2x−5   since LHS is an integer RHS  must be integer  ⇒x must be of form n or (n/2)  x is of form n  3n−2n=2n+7  n=5   x is of form (n/2)  ⌊((3n)/2)⌋−⌊2(n/2)⌋=((2n)/2)−5  ⌊((3n)/2)⌋−n=n−5  ⌊((3n)/2)⌋=2n−5  (A)  Now n must be of form 2k+1  other x will be of form n for which  we have already solved.  n=2k+1  ⌊((3(2k+1))/2)⌋=2(2k+1)−5  ⌊3k+1+(1/2)⌋=2(2k+1)−5  3k+1=4k−3  ⇒k=4 or n=9 or x=(9/2)  two solution  x=5 or x=(9/2)
$$\lfloor\mathrm{3}{x}\rfloor−\mathrm{2}−\left(\lfloor\mathrm{2}{x}\rfloor−\mathrm{1}\right)=\mathrm{2}{x}−\mathrm{6} \\ $$$$\lfloor\mathrm{3}{x}\rfloor−\lfloor\mathrm{2}{x}\rfloor=\mathrm{2}{x}−\mathrm{5}\: \\ $$$$\mathrm{since}\:\mathrm{LHS}\:\mathrm{is}\:\mathrm{an}\:\mathrm{integer}\:\mathrm{RHS} \\ $$$$\mathrm{must}\:\mathrm{be}\:\mathrm{integer} \\ $$$$\Rightarrow{x}\:\mathrm{must}\:\mathrm{be}\:\mathrm{of}\:\mathrm{form}\:{n}\:\mathrm{or}\:\frac{{n}}{\mathrm{2}} \\ $$$${x}\:\mathrm{is}\:\mathrm{of}\:\mathrm{form}\:{n} \\ $$$$\mathrm{3}{n}−\mathrm{2}{n}=\mathrm{2}{n}+\mathrm{7} \\ $$$${n}=\mathrm{5}\: \\ $$$${x}\:\mathrm{is}\:\mathrm{of}\:\mathrm{form}\:\frac{{n}}{\mathrm{2}} \\ $$$$\lfloor\frac{\mathrm{3}{n}}{\mathrm{2}}\rfloor−\lfloor\mathrm{2}\frac{{n}}{\mathrm{2}}\rfloor=\frac{\mathrm{2}{n}}{\mathrm{2}}−\mathrm{5} \\ $$$$\lfloor\frac{\mathrm{3}{n}}{\mathrm{2}}\rfloor−{n}={n}−\mathrm{5} \\ $$$$\lfloor\frac{\mathrm{3}{n}}{\mathrm{2}}\rfloor=\mathrm{2}{n}−\mathrm{5}\:\:\left({A}\right) \\ $$$$\mathrm{Now}\:{n}\:\mathrm{must}\:\mathrm{be}\:\mathrm{of}\:\mathrm{form}\:\mathrm{2}{k}+\mathrm{1} \\ $$$$\mathrm{other}\:{x}\:\mathrm{will}\:\mathrm{be}\:\mathrm{of}\:\mathrm{form}\:{n}\:\mathrm{for}\:\mathrm{which} \\ $$$$\mathrm{we}\:\mathrm{have}\:\mathrm{already}\:\mathrm{solved}. \\ $$$${n}=\mathrm{2}{k}+\mathrm{1} \\ $$$$\lfloor\frac{\mathrm{3}\left(\mathrm{2}{k}+\mathrm{1}\right)}{\mathrm{2}}\rfloor=\mathrm{2}\left(\mathrm{2}{k}+\mathrm{1}\right)−\mathrm{5} \\ $$$$\lfloor\mathrm{3}{k}+\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}}\rfloor=\mathrm{2}\left(\mathrm{2}{k}+\mathrm{1}\right)−\mathrm{5} \\ $$$$\mathrm{3}{k}+\mathrm{1}=\mathrm{4}{k}−\mathrm{3} \\ $$$$\Rightarrow{k}=\mathrm{4}\:\mathrm{or}\:{n}=\mathrm{9}\:\mathrm{or}\:{x}=\frac{\mathrm{9}}{\mathrm{2}} \\ $$$$\mathrm{two}\:\mathrm{solution} \\ $$$${x}=\mathrm{5}\:\mathrm{or}\:{x}=\frac{\mathrm{9}}{\mathrm{2}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *