Menu Close

Question-93225




Question Number 93225 by Ajao yinka last updated on 11/May/20
Commented by prakash jain last updated on 12/May/20
1+x+...+x^n  has no root in R for n even  ∫_(−∞) ^∞ x^n δ(1+x+...+x^n )dx=0  for even n. So inequality does nold  for even n.
1+x++xnhasnorootinRfornevenxnδ(1+x++xn)dx=0forevenn.Soinequalitydoesnoldforevenn.
Commented by prakash jain last updated on 12/May/20
for n odd  δ(1+x+...+x^n )=((δ(x+1))/(∣1+2x+3x^2 +..+nx^(n−1) ∣_(x=−1) ))  S=1+2x+3x^2 +...+nx^(n−1)   xS=      x+2x^2 +....+(n−1)x^(n−1) +nx^n   (1−x)S=(1+x+x^2 +..+x^(n−1) )−nx^n   x=−1  2S=n+1 (n odd)  S=((n+1)/2)  δ(1+x+x^2 +..+x^n )=((2δ(x+1))/(n+1)) (n odd)  So for odd n  ∫_(−∞) ^(+∞) x^(n+1) δ(1+x+x^2 +...+x^n )dx=(2/(n+1))
fornoddδ(1+x++xn)=δ(x+1)1+2x+3x2+..+nxn1x=1S=1+2x+3x2++nxn1xS=x+2x2+.+(n1)xn1+nxn(1x)S=(1+x+x2+..+xn1)nxnx=12S=n+1(nodd)S=n+12δ(1+x+x2+..+xn)=2δ(x+1)n+1(nodd)Soforoddn+xn+1δ(1+x+x2++xn)dx=2n+1

Leave a Reply

Your email address will not be published. Required fields are marked *