Menu Close

Question-93695




Question Number 93695 by i jagooll last updated on 14/May/20
Commented by mathmax by abdo last updated on 14/May/20
f(x) =((6x−^3 (√(27x^3 +2x−1)))/((^3 (√(8x^3 −x)) +x))) ⇒f(x) =((6x−3x(1+(2/(27x^2 ))−(1/(27x^3 )))^(1/3) )/(2x(1−(1/(8x^2 )))^(1/3)  +x))  ⇒f(x) ∼((6x−3x(1+(1/3)((2/(27x^2 ))−(1/(27x^3 )))))/(2x(1−(1/(24x^2 )))+x)) ∼((3x)/(3x)) =1 ⇒lim_(x→−∞) f(x)=1
f(x)=6x327x3+2x1(38x3x+x)f(x)=6x3x(1+227x2127x3)132x(118x2)13+xf(x)6x3x(1+13(227x2127x3))2x(1124x2)+x3x3x=1limxf(x)=1
Answered by 1549442205 last updated on 14/May/20
lim_(x→−∞) ((6x−((27x^3 +2x−1))^(1/3) )/( ((8x^3 −x))^(1/3) +x))=lim_(x→−∞) ((6−((27+(2/x^2 )−(1/x^3 )))^(1/3) )/( ((8−(1/x^2 )))^(1/3) +1))  =((6−((27))^(1/3) )/( ((8   ))^(1/3) +1))=((6−3)/(2+1))=1
\boldsymbolli\boldsymbolm\boldsymbolx6\boldsymbolx27\boldsymbolx3+2\boldsymbolx138\boldsymbolx3\boldsymbolx3+x=\boldsymbolli\boldsymbolm\boldsymbolx627+2x21x3381x23+1=627383+1=632+1=1
Commented by john santu last updated on 14/May/20
lim_(x→∞)  ≠ lim_(x→−∞)  sir
limxlimxsir
Commented by john santu last updated on 14/May/20
your answer is wrong
youransweriswrong
Commented by 1549442205 last updated on 14/May/20
excuse me,I wrote fault
excuseme,Iwrotefault
Answered by john santu last updated on 14/May/20
lim_(x→−∞)  (((6x−x ((27+(2/x^2 )−(1/x^3 )))^(1/(3  )) )/(x ((8−(1/x^2 )))^(1/(3  )) +x))) =  lim_(x→−∞)  (((−6+3)/(−2−1))) = ((−3)/(−3)) = 1
limx(6\boldsymbolx\boldsymbolx27+2\boldsymbolx21\boldsymbolx33\boldsymbolx81\boldsymbolx23+\boldsymbolx)=limx(6+321)=33=1
Commented by i jagooll last updated on 14/May/20
cooll man ������
Commented by Ar Brandon last updated on 14/May/20
My man��

Leave a Reply

Your email address will not be published. Required fields are marked *