Question Number 94071 by oustmuchiya@gmail.com last updated on 16/May/20
Commented by hknkrc46 last updated on 16/May/20
$$\left(\mathrm{6}\right)\:\mathrm{sin}\:\left(\mathrm{180}^{\circ} +\mathrm{A}\right)=−\mathrm{sin}\:\mathrm{A} \\ $$$$\mathrm{cos}\:\left(\mathrm{90}^{\circ} −\mathrm{A}\right)=\mathrm{sin}\:\mathrm{A} \\ $$$$\mathrm{tan}\:\left(\mathrm{270}^{\circ} −\mathrm{A}\right)=\mathrm{cot}\:\mathrm{A} \\ $$$$\mathrm{sec}\:\left(\mathrm{540}^{\circ} −\mathrm{A}\right)=\mathrm{sec}\:\left(\mathrm{180}^{\circ} −\mathrm{A}\right)=−\mathrm{sec}\:\mathrm{A} \\ $$$$\mathrm{cos}\:\left(\mathrm{360}^{\circ} +\mathrm{A}\right)=\mathrm{cos}\:\mathrm{A} \\ $$$$\mathrm{cosec}\:\left(\mathrm{270}^{\circ} +\mathrm{A}\right)=−\mathrm{sec}\:\mathrm{A} \\ $$$$=\frac{\left(−\mathrm{sin}\:\mathrm{A}\right)\centerdot\mathrm{sin}\:\mathrm{A}\centerdot\mathrm{cot}\:\mathrm{A}}{\left(−\mathrm{sec}\:\mathrm{A}\right)\centerdot\mathrm{cos}\:\mathrm{A}\centerdot\left(−\mathrm{sec}\:\mathrm{A}\right)}=\frac{−\mathrm{sin}\:\mathrm{A}}{\mathrm{sec}\:^{\mathrm{2}} \mathrm{A}}\centerdot\mathrm{tan}\:\mathrm{A}\centerdot\mathrm{cot}\:\mathrm{A} \\ $$$$=\frac{−\mathrm{sin}\:\mathrm{A}}{\frac{\mathrm{1}}{\mathrm{cos}\:^{\mathrm{2}} \mathrm{A}}}=−\mathrm{sin}\:\mathrm{A}\centerdot\mathrm{cos}\:^{\mathrm{2}} \mathrm{A} \\ $$$$\left(\mathrm{7}\right)\:\mathrm{sin}\:\left(\frac{\pi}{\mathrm{2}}−\theta\right)=\mathrm{cos}\:\theta \\ $$$$\mathrm{cos}\:\left(\frac{\pi}{\mathrm{2}}−\theta\right)=\mathrm{sin}\:\theta \\ $$$$\Rightarrow\:\mathrm{sin}\:\theta\centerdot\mathrm{cos}\:\theta\centerdot\left\{\mathrm{cos}\:\theta\centerdot\mathrm{cosec}\:\theta+\mathrm{sin}\:\theta\centerdot\mathrm{sec}\:\theta\right\} \\ $$$$=\mathrm{sin}\:\theta\centerdot\mathrm{cos}\:\theta\centerdot\mathrm{cos}\:\theta\centerdot\frac{\mathrm{1}}{\mathrm{sin}\:\theta}+\mathrm{sin}\:\theta\centerdot\mathrm{cos}\:\theta\centerdot\mathrm{sin}\:\theta\centerdot\frac{\mathrm{1}}{\mathrm{cos}\:\theta} \\ $$$$=\mathrm{cos}\:^{\mathrm{2}} \theta+\mathrm{sin}\:^{\mathrm{2}} \theta=\mathrm{1} \\ $$
Commented by i jagooll last updated on 16/May/20
$$\left(\mathrm{6}\right)\:\frac{−\mathrm{sin}\:\mathrm{A}.\mathrm{sin}\:\mathrm{A}.\mathrm{cot}\:\mathrm{A}}{−\mathrm{sec}\:\:\mathrm{A}.\mathrm{cos}\:\mathrm{A}\left(−\mathrm{sec}\:\mathrm{A}\right)}\:= \\ $$$$−\frac{\mathrm{sin}^{\mathrm{2}} \mathrm{A}\:\mathrm{cot}\:\mathrm{A}\:}{\mathrm{cos}\:\mathrm{A}\:\mathrm{sec}\:^{\mathrm{2}} \mathrm{A}}\:=−\:\frac{\mathrm{sin}\:\mathrm{Acos}\:\mathrm{A}}{\mathrm{sec}\:\mathrm{A}} \\ $$$$=\:−\:\mathrm{sin}\:\mathrm{A}\:\mathrm{cos}\:^{\mathrm{2}} \mathrm{A} \\ $$
Answered by i jagooll last updated on 16/May/20
$$\left(\mathrm{7}\right)\:\mathrm{sin}\:\theta\mathrm{cos}\:\theta\left\{\mathrm{cos}\:\theta\:\mathrm{csc}\:\theta\:+\:\mathrm{sin}\:\theta\mathrm{sec}\:\theta\right\}= \\ $$$$\mathrm{sin}\:\theta\mathrm{cos}\:\theta\left\{\frac{\mathrm{cos}\:\theta}{\mathrm{sin}\:\theta}+\frac{\mathrm{sin}\:\theta}{\mathrm{cos}\:\theta}\right\}\:= \\ $$$$\mathrm{cos}\:^{\mathrm{2}} \theta\:+\:\mathrm{sin}\:^{\mathrm{2}} \:\theta\:=\:\mathrm{1} \\ $$