Menu Close

Question-94212




Question Number 94212 by abony1303 last updated on 17/May/20
Answered by john santu last updated on 17/May/20
(1) lim_(x→1^− )  f(x)=lim_(x→1^+ ) f(x)  lim_(x→1^− )  ((ax^2 +b)/(x−1)) = lim_(x→1^+ ) (c/x)+1  (i) a(1)^2 +b = 0 ⇒ a = −b   lim_(x→1^− )  ((ax^2 −a)/(x−1)) = c+1  lim_(x→1^− )  ((a(x+1)(x−1))/(x−1)) = c+1  2a = c+1   (2)⇒lim_(x→1^− ) f ′(x)=lim_(x→1^+ )  f ′ (x)  lim_(x→1^− ) a = lim_(x→1^+ ) −(c/x^2 ) ⇒ a = −c   so c + 1 = −2c ⇒ c = −(1/3)   { ((a = (1/3))),((b = −(1/3))) :}  ∴ a+b+c = −(1/3)
(1)limx1f(x)=limfx1+(x)limx1ax2+bx1=limx1+cx+1(i)a(1)2+b=0a=blimx1ax2ax1=c+1limx1a(x+1)(x1)x1=c+12a=c+1(2)limfx1(x)=limx1+f(x)limax1=limx1+cx2a=csoc+1=2cc=13{a=13b=13a+b+c=13

Leave a Reply

Your email address will not be published. Required fields are marked *