Menu Close

Question-94602




Question Number 94602 by peter frank last updated on 19/May/20
Answered by mr W last updated on 21/May/20
Commented by mr W last updated on 21/May/20
at time t:  x_M =d  y_M =h−(1/2)gt^2   x_B =u cos θ t  y_B =u sin θ t−(1/2)gt^2   such that the bullet meets the monkey,  u cos θ t=d  ⇒t=(d/(u cos θ))  u sin θ t−(1/2)gt^2 =h−(1/2)gt^2   u sin θ ×(d/(u cos θ))=h  ⇒tan θ=(h/d)  this is true if the gun is directed to  the monkey as it fires the bullet.  that means the bullet can always   meet the monkey.    such that the bullet meets the monkey  in the air:  h−(1/2)g((d/(u cos θ)))^2 ≥0  u^2 ≥((gd^2 )/(2h))(1+tan^2  θ)=((gd^2 )/(2h))(1+(h^2 /d^2 ))=((g(d^2 +h^2 ))/(2h))  ⇒u≥(√((g(d^2 +h^2 ))/(2h)))
$${at}\:{time}\:{t}: \\ $$$${x}_{{M}} ={d} \\ $$$${y}_{{M}} ={h}−\frac{\mathrm{1}}{\mathrm{2}}{gt}^{\mathrm{2}} \\ $$$${x}_{{B}} ={u}\:\mathrm{cos}\:\theta\:{t} \\ $$$${y}_{{B}} ={u}\:\mathrm{sin}\:\theta\:{t}−\frac{\mathrm{1}}{\mathrm{2}}{gt}^{\mathrm{2}} \\ $$$${such}\:{that}\:{the}\:{bullet}\:{meets}\:{the}\:{monkey}, \\ $$$${u}\:\mathrm{cos}\:\theta\:{t}={d} \\ $$$$\Rightarrow{t}=\frac{{d}}{{u}\:\mathrm{cos}\:\theta} \\ $$$${u}\:\mathrm{sin}\:\theta\:{t}−\frac{\mathrm{1}}{\mathrm{2}}{gt}^{\mathrm{2}} ={h}−\frac{\mathrm{1}}{\mathrm{2}}{gt}^{\mathrm{2}} \\ $$$${u}\:\mathrm{sin}\:\theta\:×\frac{{d}}{{u}\:\mathrm{cos}\:\theta}={h} \\ $$$$\Rightarrow\mathrm{tan}\:\theta=\frac{{h}}{{d}} \\ $$$${this}\:{is}\:{true}\:{if}\:{the}\:{gun}\:{is}\:{directed}\:{to} \\ $$$${the}\:{monkey}\:{as}\:{it}\:{fires}\:{the}\:{bullet}. \\ $$$${that}\:{means}\:{the}\:\boldsymbol{{bullet}}\:\boldsymbol{{can}}\:\boldsymbol{{always}}\: \\ $$$$\boldsymbol{{meet}}\:\boldsymbol{{the}}\:\boldsymbol{{monkey}}. \\ $$$$ \\ $$$${such}\:{that}\:{the}\:{bullet}\:{meets}\:{the}\:{monkey} \\ $$$${in}\:{the}\:{air}: \\ $$$${h}−\frac{\mathrm{1}}{\mathrm{2}}{g}\left(\frac{{d}}{{u}\:\mathrm{cos}\:\theta}\right)^{\mathrm{2}} \geqslant\mathrm{0} \\ $$$${u}^{\mathrm{2}} \geqslant\frac{{gd}^{\mathrm{2}} }{\mathrm{2}{h}}\left(\mathrm{1}+\mathrm{tan}^{\mathrm{2}} \:\theta\right)=\frac{{gd}^{\mathrm{2}} }{\mathrm{2}{h}}\left(\mathrm{1}+\frac{{h}^{\mathrm{2}} }{{d}^{\mathrm{2}} }\right)=\frac{{g}\left({d}^{\mathrm{2}} +{h}^{\mathrm{2}} \right)}{\mathrm{2}{h}} \\ $$$$\Rightarrow{u}\geqslant\sqrt{\frac{{g}\left({d}^{\mathrm{2}} +{h}^{\mathrm{2}} \right)}{\mathrm{2}{h}}} \\ $$
Commented by peter frank last updated on 22/May/20
thank you
$$\mathrm{thank}\:\mathrm{you} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *