Menu Close

Question-94710




Question Number 94710 by abony1303 last updated on 20/May/20
Commented by PRITHWISH SEN 2 last updated on 20/May/20
2019^(th) term will be 89  then tbe remainder is 9  ans-(5)
$$\mathrm{2019}^{\mathrm{th}} \mathrm{term}\:\mathrm{will}\:\mathrm{be}\:\mathrm{89} \\ $$$$\mathrm{then}\:\mathrm{tbe}\:\mathrm{remainder}\:\mathrm{is}\:\mathrm{9} \\ $$$$\boldsymbol{\mathrm{ans}}-\left(\mathrm{5}\right) \\ $$
Commented by abony1303 last updated on 20/May/20
correct answer 2019^(th ) term is 89 but how?
$${correct}\:{answer}\:\mathrm{2019}^{{th}\:} {term}\:{is}\:\mathrm{89}\:{but}\:{how}? \\ $$
Answered by PRITHWISH SEN 2 last updated on 20/May/20
the sequence comprises of the sets of similar terms  (1st set only 1 term),(2nd set 3 terms), and so on...  the no. of terms in each set of the sequence can be written as   1,3,5,... and it is a new sequence representing  the no. of terms of every set  then 2019 th term will be the sum of the sequence  upto n^(th)  set or the n^(th)  number of new sequence(say)  ∴ sum upto n^(th) set = n^2  ∵ the sum of odd natural  numbers upto n term be n^2   ∴ n^2 =2019 ⇒n∽44  that is upto 44^(th) set that is 44^2 =1936 terms  ∴ for remaining (2019−1936)=83 terms the 2019^(th)   number will be in 45th set  ∴ in 45th set the number is (2×45−1)=89  thus 89 when divided by 10 gives 9 as a remainder.
$$\mathrm{the}\:\mathrm{sequence}\:\mathrm{comprises}\:\mathrm{of}\:\mathrm{the}\:\mathrm{sets}\:\mathrm{of}\:\mathrm{similar}\:\mathrm{terms} \\ $$$$\left(\mathrm{1st}\:\mathrm{set}\:\mathrm{only}\:\mathrm{1}\:\mathrm{term}\right),\left(\mathrm{2nd}\:\mathrm{set}\:\mathrm{3}\:\mathrm{terms}\right),\:\mathrm{and}\:\mathrm{so}\:\mathrm{on}… \\ $$$$\mathrm{the}\:\mathrm{no}.\:\mathrm{of}\:\mathrm{terms}\:\mathrm{in}\:\mathrm{each}\:\mathrm{set}\:\mathrm{of}\:\mathrm{the}\:\mathrm{sequence}\:\mathrm{can}\:\mathrm{be}\:\mathrm{written}\:\mathrm{as}\: \\ $$$$\mathrm{1},\mathrm{3},\mathrm{5},…\:\mathrm{and}\:\mathrm{it}\:\mathrm{is}\:\mathrm{a}\:\mathrm{new}\:\mathrm{sequence}\:\mathrm{representing} \\ $$$$\mathrm{the}\:\mathrm{no}.\:\mathrm{of}\:\mathrm{terms}\:\mathrm{of}\:\mathrm{every}\:\mathrm{set} \\ $$$$\mathrm{then}\:\mathrm{2019}\:\mathrm{th}\:\mathrm{term}\:\mathrm{will}\:\mathrm{be}\:\mathrm{the}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{the}\:\mathrm{sequence} \\ $$$$\mathrm{upto}\:\mathrm{n}^{\mathrm{th}} \:\mathrm{set}\:\mathrm{or}\:\mathrm{the}\:\mathrm{n}^{\mathrm{th}} \:\mathrm{number}\:\mathrm{of}\:\mathrm{new}\:\mathrm{sequence}\left(\mathrm{say}\right) \\ $$$$\therefore\:\mathrm{sum}\:\mathrm{upto}\:\mathrm{n}^{\mathrm{th}} \mathrm{set}\:=\:\mathrm{n}^{\mathrm{2}} \:\because\:\mathrm{the}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{odd}\:\mathrm{natural} \\ $$$$\mathrm{numbers}\:\mathrm{upto}\:\mathrm{n}\:\mathrm{term}\:\mathrm{be}\:\mathrm{n}^{\mathrm{2}} \\ $$$$\therefore\:\mathrm{n}^{\mathrm{2}} =\mathrm{2019}\:\Rightarrow\mathrm{n}\backsim\mathrm{44} \\ $$$$\mathrm{that}\:\mathrm{is}\:\mathrm{upto}\:\mathrm{44}^{\mathrm{th}} \mathrm{set}\:\mathrm{that}\:\mathrm{is}\:\mathrm{44}^{\mathrm{2}} =\mathrm{1936}\:\mathrm{terms} \\ $$$$\therefore\:\mathrm{for}\:\mathrm{remaining}\:\left(\mathrm{2019}−\mathrm{1936}\right)=\mathrm{83}\:\mathrm{terms}\:\mathrm{the}\:\mathrm{2019}^{\mathrm{th}} \\ $$$$\mathrm{number}\:\mathrm{will}\:\mathrm{be}\:\mathrm{in}\:\mathrm{45th}\:\mathrm{set} \\ $$$$\therefore\:\mathrm{in}\:\mathrm{45th}\:\mathrm{set}\:\mathrm{the}\:\mathrm{number}\:\mathrm{is}\:\left(\mathrm{2}×\mathrm{45}−\mathrm{1}\right)=\mathrm{89} \\ $$$$\mathrm{thus}\:\mathrm{89}\:\mathrm{when}\:\mathrm{divided}\:\mathrm{by}\:\mathrm{10}\:\mathrm{gives}\:\mathrm{9}\:\mathrm{as}\:\mathrm{a}\:\mathrm{remainder}. \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *