Menu Close

Question-94767




Question Number 94767 by Hamida last updated on 20/May/20
Answered by mathmax by abdo last updated on 21/May/20
y(x) =5^(−x)  +5 arcsin((x/6)) +ln(x^2  +4)+e^(((−7)/2)x)  +3^(−x) ln5  ⇒y(x) =u(x)+v(x) with u(x) =5^(−x)  +3^(−x)  ln(5)  and v(x) =5 arcsin((x/6))+ln(x^2  +4) +e^(−((7x)/2))   we have u(x) =e^(−xln5)  +e^(−xln(3)) ln5 ⇒u^′ (x)=−ln5 e^(−xln5)   −ln3 e^(−xln3) ln5 =−ln5 ×5^(−x)  −ln3.ln5 3^(−x)   v^′ (x) =(5/6)×(1/( (√(1−(x^2 /(36)))))) +((2x)/(x^2  +4)) −(7/2)e^(−((7x)/2))  ⇒  y^′ (x) =−ln5 ×5^(−x)  −ln3.ln5 ×3^(−x)  +(5/(6(√(1−(x^2 /(36)))))) +((2x)/(x^2  +4))−(7/2)e^(−((7x)/2))
y(x)=5x+5arcsin(x6)+ln(x2+4)+e72x+3xln5y(x)=u(x)+v(x)withu(x)=5x+3xln(5)andv(x)=5arcsin(x6)+ln(x2+4)+e7x2wehaveu(x)=exln5+exln(3)ln5u(x)=ln5exln5ln3exln3ln5=ln5×5xln3.ln53xv(x)=56×11x236+2xx2+472e7x2y(x)=ln5×5xln3.ln5×3x+561x236+2xx2+472e7x2

Leave a Reply

Your email address will not be published. Required fields are marked *