Question Number 94768 by Hamida last updated on 20/May/20
Answered by mathmax by abdo last updated on 21/May/20
$$\mathrm{y}\left(\mathrm{x}\right)\:=\frac{\mathrm{x}^{\mathrm{4}} \:+\mathrm{6x}^{\mathrm{2}} \:+\mathrm{4}}{\mathrm{x}^{\mathrm{2}} \:+\mathrm{5}}\:\Rightarrow\frac{\mathrm{dy}}{\mathrm{dx}}\:=\frac{\left(\mathrm{4x}^{\mathrm{3}} \:+\mathrm{12x}\right)\left(\mathrm{x}^{\mathrm{2}} \:+\mathrm{5}\right)−\mathrm{2x}\left(\mathrm{x}^{\mathrm{4}} \:+\mathrm{6x}^{\mathrm{2}} \:+\mathrm{4}\right)}{\left(\mathrm{x}^{\mathrm{2}} \:+\mathrm{5}\right)^{\mathrm{2}} } \\ $$$$=\frac{\mathrm{4x}^{\mathrm{5}} \:+\mathrm{20x}^{\mathrm{3}} \:+\mathrm{12x}^{\mathrm{3}} \:+\mathrm{60x}\:−\mathrm{2}\:\mathrm{x}^{\mathrm{5}} −\mathrm{12x}^{\mathrm{3}} \:−\mathrm{8x}}{\left(\mathrm{x}^{\mathrm{2}} \:+\mathrm{5}\right)^{\mathrm{2}} } \\ $$$$=\frac{\mathrm{2x}^{\mathrm{5}} +\mathrm{20x}^{\mathrm{3}} \:+\mathrm{52x}}{\left(\mathrm{x}^{\mathrm{2}} \:+\mathrm{5}\right)^{\mathrm{2}} } \\ $$