Menu Close

Question-94997




Question Number 94997 by i jagooll last updated on 22/May/20
Answered by bobhans last updated on 22/May/20
homogenous solution  υ^2 −2υ+2 = 0  υ = 1± i ⇒y_h  = Ae^x cos x +Be^x sin x   particular integral   y_p  = ϑ_1 e^x sin x+ϑ_2 e^x cos x   y′= ϑ_1 e^x sin x+ϑ_1 e^x cos x+ϑ_2 e^x cos x−ϑ_2 e^x sin x+  (ϑ_1 ′e^x sin x+ϑ_2 ′e^x cos x)   set ϑ_1 ′e^x sin x+ϑ_2 ′e^x cos x = 0  y′′= 2e^x (ϑ_1 cos x−ϑ_2 sin x)+(ϑ_1 ′e^x sin x+ϑ_1 ′e^x cos x+  ϑ_2 ′e^x cos x−ϑ_2 ′e^x sin x )  set ϑ_1 ′e^x sin x+ϑ_1 ′e^x cos x+ϑ_2 ′e^x cos x−  ϑ_2 ′e^x sin x = e^x  (1+sin x)  ⇒ϑ_1  = ∫ (cos x+(1/2)sin 2x) dx = sin x−(1/4)cos 2x  ⇒ϑ_2  = ∫ (−sin x+((1−cos 2x)/2)) dx  ϑ_2 = cos x+(1/2)x−(1/4)sin 2x   complete solution y_h +y_p
homogenoussolutionυ22υ+2=0υ=1±iyh=Aexcosx+Bexsinxparticularintegralyp=ϑ1exsinx+ϑ2excosxy=ϑ1exsinx+ϑ1excosx+ϑ2excosxϑ2exsinx+(ϑ1exsinx+ϑ2excosx)setϑ1exsinx+ϑ2excosx=0y=2ex(ϑ1cosxϑ2sinx)+(ϑ1exsinx+ϑ1excosx+ϑ2excosxϑ2exsinx)setϑ1exsinx+ϑ1excosx+ϑ2excosxϑ2exsinx=ex(1+sinx)ϑ1=(cosx+12sin2x)dx=sinx14cos2xϑ2=(sinx+1cos2x2)dxϑ2=cosx+12x14sin2xcompletesolutionyh+yp
Answered by mathmax by abdo last updated on 23/May/20
equation at form y^((2))  +py^′  qy =f(x)  (he)→y^(′′) −2y^′  +2y =0→r^2 −2r +2 =0  Δ^′  =1−2 =−1 ⇒r_1 =1+i  and r_2 =1−i ⇒  y_h =α e^((1+i)x)  +β e^((1−i)x)  =k_1 e^x  cosx +k_2 e^x  sinx  let u_1 =e^x  cosx and u_2 =e^x  sinx  W(u_1 ,u_2 ) = determinant (((u_(1           )  u_2 )),((u_1 ^′         u_2 ^′ )))= determinant (((e^x  cosx        e^x sinx)),((e^x cosx−e^x sinx             e^x  sinx +e^x  cosx)))  =e^(2x)  cosx sinx +e^(2x)  cos^2 x−e^(2x) cosxsinx+e^(2x)  sin^2 x  =e^(2x)        and  W_1 = determinant (((o                           e^x sinx)),((e^x (1+sinx)       e^x  sinx +e^x  cosx)))  =−e^(2x)  sinx(1+sinx)      W_2 = determinant (((e^x  cosx                 0)),((e^x  cosx−e^x sinx          e^x (1+sinx))))=e^(2x)  cosx(1+sinx)  v_1 ^′ =(W_1 /W)    and v_2 ^′  =(W_2 /W) ⇒v_1 ^′   =((−e^(2x)  sinx(1+sinx))/e^(2x) )  =−sinx(1+sinx) ⇒v_1 =−∫ sinx dx −∫ sin^2 x dx  =cosx  −(1/2)∫(1−cos(2x))dx =cosx−x +(1/4)sin(2x)  v_2 ^′ =((e^(2x)  cosx(1+sinx))/e^(2x) ) =cosx +(1/2)sin(2x) ⇒  v_2 =∫(cosx +(1/2)sin(2x))dx =sinx−(1/4)cos(2x) ⇒  y_p =u_1 v_1  +u_2 v_2  =e^x  cosx(cosx−x +(1/4)sin(2x))  +e^x  sinx(sinx−(1/4)cos(2x)) =e^x  cos^2 x−xe^x  cosx+(1/4)e^x cosxsin(2x)  +e^x  sin^2 x −(1/4)e^x  sinx cos(2x) =e^x  −xe^x  cosx   +(1/4)e^x (cosx sin(2x)−sinx cos(2x)) ⇒  y_g =y_h  +y_p
equationatformy(2)+pyqy=f(x)(he)y2y+2y=0r22r+2=0Δ=12=1r1=1+iandr2=1iyh=αe(1+i)x+βe(1i)x=k1excosx+k2exsinxletu1=excosxandu2=exsinxW(u1,u2)=|u1u2u1u2|=|excosxexsinxexcosxexsinxexsinx+excosx|=e2xcosxsinx+e2xcos2xe2xcosxsinx+e2xsin2x=e2xandW1=|oexsinxex(1+sinx)exsinx+excosx|=e2xsinx(1+sinx)W2=|excosx0excosxexsinxex(1+sinx)|=e2xcosx(1+sinx)v1=W1Wandv2=W2Wv1=e2xsinx(1+sinx)e2x=sinx(1+sinx)v1=sinxdxsin2xdx=cosx12(1cos(2x))dx=cosxx+14sin(2x)v2=e2xcosx(1+sinx)e2x=cosx+12sin(2x)v2=(cosx+12sin(2x))dx=sinx14cos(2x)yp=u1v1+u2v2=excosx(cosxx+14sin(2x))+exsinx(sinx14cos(2x))=excos2xxexcosx+14excosxsin(2x)+exsin2x14exsinxcos(2x)=exxexcosx+14ex(cosxsin(2x)sinxcos(2x))yg=yh+yp

Leave a Reply

Your email address will not be published. Required fields are marked *