Question-94997 Tinku Tara June 4, 2023 Differential Equation 0 Comments FacebookTweetPin Question Number 94997 by i jagooll last updated on 22/May/20 Answered by bobhans last updated on 22/May/20 homogenoussolutionυ2−2υ+2=0υ=1±i⇒yh=Aexcosx+Bexsinxparticularintegralyp=ϑ1exsinx+ϑ2excosxy′=ϑ1exsinx+ϑ1excosx+ϑ2excosx−ϑ2exsinx+(ϑ1′exsinx+ϑ2′excosx)setϑ1′exsinx+ϑ2′excosx=0y″=2ex(ϑ1cosx−ϑ2sinx)+(ϑ1′exsinx+ϑ1′excosx+ϑ2′excosx−ϑ2′exsinx)setϑ1′exsinx+ϑ1′excosx+ϑ2′excosx−ϑ2′exsinx=ex(1+sinx)⇒ϑ1=∫(cosx+12sin2x)dx=sinx−14cos2x⇒ϑ2=∫(−sinx+1−cos2x2)dxϑ2=cosx+12x−14sin2xcompletesolutionyh+yp Answered by mathmax by abdo last updated on 23/May/20 equationatformy(2)+py′qy=f(x)(he)→y″−2y′+2y=0→r2−2r+2=0Δ′=1−2=−1⇒r1=1+iandr2=1−i⇒yh=αe(1+i)x+βe(1−i)x=k1excosx+k2exsinxletu1=excosxandu2=exsinxW(u1,u2)=|u1u2u1′u2′|=|excosxexsinxexcosx−exsinxexsinx+excosx|=e2xcosxsinx+e2xcos2x−e2xcosxsinx+e2xsin2x=e2xandW1=|oexsinxex(1+sinx)exsinx+excosx|=−e2xsinx(1+sinx)W2=|excosx0excosx−exsinxex(1+sinx)|=e2xcosx(1+sinx)v1′=W1Wandv2′=W2W⇒v1′=−e2xsinx(1+sinx)e2x=−sinx(1+sinx)⇒v1=−∫sinxdx−∫sin2xdx=cosx−12∫(1−cos(2x))dx=cosx−x+14sin(2x)v2′=e2xcosx(1+sinx)e2x=cosx+12sin(2x)⇒v2=∫(cosx+12sin(2x))dx=sinx−14cos(2x)⇒yp=u1v1+u2v2=excosx(cosx−x+14sin(2x))+exsinx(sinx−14cos(2x))=excos2x−xexcosx+14excosxsin(2x)+exsin2x−14exsinxcos(2x)=ex−xexcosx+14ex(cosxsin(2x)−sinxcos(2x))⇒yg=yh+yp Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Resolve-u-n-3u-n-1-12-3-4-n-and-u-n-2u-n-1-5cos-n-3-u-o-1-Next Next post: let-give-u-n-1-n-1-1-1-2-1-n-find-lim-n-u-n- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.