Menu Close

Question-95485




Question Number 95485 by O Predador last updated on 25/May/20
Commented by PRITHWISH SEN 2 last updated on 25/May/20
2llog_(ln(π)) (1/( (√x)+(√(ln(π))))) −2log_(ln(π)) (1/(x−lnx)) = 1  2log_(ln(π)) ((x−lnπ)/( (√x)+(√(ln(π))))) = 1  log_(lnπ) ((√x)+(√(lnπ)))^2 =1  x+2(√(x(lnπ))) +lnπ=lnπ  (√x)=−2(√(lnπ))    {∵ x≠0 }  x=4ln𝛑
$$\mathrm{2llog}_{\mathrm{ln}\left(\pi\right)} \frac{\mathrm{1}}{\:\sqrt{\mathrm{x}}+\sqrt{\mathrm{ln}\left(\pi\right)}}\:−\mathrm{2log}_{\mathrm{ln}\left(\pi\right)} \frac{\mathrm{1}}{\mathrm{x}−\mathrm{lnx}}\:=\:\mathrm{1} \\ $$$$\mathrm{2log}_{\mathrm{ln}\left(\pi\right)} \frac{\mathrm{x}−\mathrm{ln}\pi}{\:\sqrt{\mathrm{x}}+\sqrt{\mathrm{ln}\left(\pi\right)}}\:=\:\mathrm{1} \\ $$$$\mathrm{log}_{\mathrm{ln}\pi} \left(\sqrt{\mathrm{x}}+\sqrt{\mathrm{ln}\pi}\right)^{\mathrm{2}} =\mathrm{1} \\ $$$$\mathrm{x}+\mathrm{2}\sqrt{\mathrm{x}\left(\mathrm{ln}\pi\right)}\:+\mathrm{ln}\pi=\mathrm{ln}\pi \\ $$$$\sqrt{\mathrm{x}}=−\mathrm{2}\sqrt{\mathrm{ln}\pi}\:\:\:\:\left\{\because\:\mathrm{x}\neq\mathrm{0}\:\right\} \\ $$$$\boldsymbol{\mathrm{x}}=\mathrm{4}\boldsymbol{\mathrm{ln}\pi} \\ $$$$ \\ $$
Commented by O Predador last updated on 25/May/20
 Mito!
$$\:\mathrm{Mito}! \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *