Question Number 95697 by i jagooll last updated on 27/May/20
Answered by john santu last updated on 27/May/20
$${a}_{\mathrm{0}} =\:\frac{\mathrm{1}}{\mathrm{2}\pi}\:\underset{−\pi} {\overset{\pi} {\int}}\:\mathrm{cos}\:{at}\:{dt}\:=\:\frac{\mathrm{1}}{\mathrm{2}\pi{a}}\:\left[\mathrm{sin}\:{at}\:\right]_{−\pi} ^{\pi} \\ $$$$=\:\frac{\mathrm{sin}\:\pi{a}}{{a}\pi}\:. \\ $$$${a}_{{n}} \:=\:\frac{\mathrm{1}}{\mathrm{2}\pi}\:\underset{−\pi} {\overset{\pi} {\int}}\:\mathrm{cos}\:\left({a}+{n}\right){t}\:+\mathrm{cos}\:\left({a}−{n}\right){t}\:{dt} \\ $$$${a}_{{n}} \:=\:\frac{\mathrm{2}{a}\left(−\mathrm{1}\right)^{{n}} \:\mathrm{sin}\:{a}\pi}{\pi\left({a}^{\mathrm{2}} −{n}^{\mathrm{2}} \right)}\:.\:;\:{b}_{{n}} \:=\:\mathrm{0} \\ $$$$\Rightarrow\frac{\mathrm{1}}{\pi}\underset{−\pi} {\overset{\pi} {\int}}\:\mathrm{cos}\:^{\mathrm{2}} {at}\:{dt}\:=\:\mathrm{2}{a}_{\mathrm{0}} \:+\:\underset{\mathrm{n}\:=\:\mathrm{1}} {\overset{\infty} {\sum}}\left({a}_{{n}} ^{\mathrm{2}} +{b}_{{n}} ^{\mathrm{2}} \right)\: \\ $$$$\Rightarrow\mathrm{1}+\frac{\mathrm{sin}\:\mathrm{2}\pi{a}}{\mathrm{2}{a}}\:=\:\mathrm{2}\left(\frac{\mathrm{sin}\:\pi{a}}{{a}\pi}\right)^{\mathrm{2}} +\underset{\mathrm{n}\:=\:\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{4}{a}^{\mathrm{2}} \mathrm{sin}\:^{\mathrm{2}} {a}\pi}{\pi^{\mathrm{2}} \left(\mathrm{n}^{\mathrm{2}} −{a}^{\mathrm{2}} \right)^{\mathrm{2}} } \\ $$$$\Rightarrow\underset{\mathrm{n}\:=\:\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\left(\mathrm{n}^{\mathrm{2}} −{a}^{\mathrm{2}} \right)^{\mathrm{2}} }\:=\:\frac{\pi^{\mathrm{2}} }{\mathrm{4}{a}^{\mathrm{2}} \mathrm{sin}\:^{\mathrm{2}} {a}\pi}\:\left[\mathrm{1}+\frac{\mathrm{sin}\:\mathrm{2}\pi{a}}{\mathrm{2}{a}}\right]\:−\frac{\mathrm{1}}{\mathrm{2}{a}^{\mathrm{4}} }\: \\ $$$$ \\ $$
Answered by mathmax by abdo last updated on 27/May/20
$$\mathrm{let}\:\mathrm{developp}\:\mathrm{f}\:\mathrm{at}\:\mathrm{fourier}\:\mathrm{serie}\:\:\mathrm{f}\left(\mathrm{x}\right)\:=\frac{\mathrm{a}_{\mathrm{0}} }{\mathrm{2}}\:+\sum_{\mathrm{n}=\mathrm{1}} ^{\infty} \:\mathrm{a}_{\mathrm{n}} \mathrm{cos}\left(\mathrm{nx}\right) \\ $$$$\mathrm{a}_{\mathrm{n}} =\frac{\mathrm{2}}{\mathrm{T}}\int_{\left[\mathrm{T}\right]} \:\:\mathrm{f}\left(\mathrm{x}\right)\mathrm{cos}\left(\mathrm{nx}\right)\mathrm{dx}\:=\frac{\mathrm{1}}{\pi}\int_{−\pi} ^{\pi} \:\mathrm{cos}\left(\alpha\mathrm{x}\right)\mathrm{cos}\left(\mathrm{nx}\right)\mathrm{dx} \\ $$$$=\frac{\mathrm{2}}{\pi}\:\int_{\mathrm{0}} ^{\pi} \:\mathrm{cos}\left(\alpha\mathrm{x}\right)\mathrm{cos}\left(\mathrm{nx}\right)\mathrm{dx}\:\Rightarrow\frac{\pi}{\mathrm{2}}\mathrm{a}_{\mathrm{n}} =\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\pi} \:\:\left(\mathrm{cos}\left(\mathrm{n}+\alpha\right)\mathrm{x}\:+\mathrm{cos}\left(\mathrm{n}−\alpha\right)\mathrm{x}\right)\mathrm{dx} \\ $$$$\Rightarrow\pi\mathrm{a}_{\mathrm{n}} =\left[\frac{\mathrm{1}}{\mathrm{n}+\alpha}\:\mathrm{sin}\left(\mathrm{n}+\alpha\right)\mathrm{x}\:+\frac{\mathrm{1}}{\mathrm{n}−\alpha}\:\mathrm{sin}\left(\mathrm{n}−\alpha\right)\mathrm{x}\right]_{\mathrm{0}} ^{\pi} \\ $$$$=\frac{\mathrm{1}}{\mathrm{n}+\alpha}\mathrm{sin}\left(\mathrm{n}\pi\:+\alpha\pi\right)+\frac{\mathrm{1}}{\mathrm{n}−\alpha}\mathrm{sin}\left(\mathrm{n}\pi−\alpha\pi\right) \\ $$$$=\frac{\left(−\mathrm{1}\right)^{\mathrm{n}} \:\mathrm{sin}\left(\alpha\pi\right)}{\mathrm{n}+\alpha}\:+\frac{−\left(−\mathrm{1}\right)^{\mathrm{n}} \:\mathrm{sin}\left(\alpha\pi\right)}{\mathrm{n}−\alpha}\:=\left(−\mathrm{1}\right)^{\mathrm{n}} \:\mathrm{sin}\left(\alpha\pi\right)\left\{\frac{\mathrm{1}}{\mathrm{n}+\alpha}−\frac{\mathrm{1}}{\mathrm{n}−\alpha}\right\} \\ $$$$=\left(−\mathrm{1}\right)^{\mathrm{n}} \:\mathrm{sin}\left(\alpha\pi\right)\left(\frac{−\mathrm{2}\alpha}{\mathrm{n}^{\mathrm{2}} −\alpha^{\mathrm{2}} }\right) \\ $$$$\mathrm{a}_{\mathrm{0}} =\frac{\mathrm{2}}{\pi}\int_{\mathrm{0}} ^{\pi} \:\mathrm{cos}\left(\alpha\mathrm{x}\right)\mathrm{dx}\:=\frac{\mathrm{2}}{\pi}\left(\frac{\mathrm{1}}{\alpha}\mathrm{sin}\left(\alpha\pi\right)\right)\:\Rightarrow\frac{\mathrm{a}_{\mathrm{0}} }{\mathrm{2}}\:=\frac{\mathrm{sin}\left(\pi\alpha\right)}{\pi\alpha}\:\Rightarrow \\ $$$$\mathrm{cos}\left(\alpha\mathrm{x}\right)\:=\frac{\mathrm{sin}\left(\pi\alpha\right)}{\pi\alpha}\:−\frac{\mathrm{2}\alpha}{\pi}\sum_{\mathrm{n}=\mathrm{1}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{\mathrm{n}} \:\mathrm{sin}\left(\alpha\pi\right)}{\mathrm{n}^{\mathrm{2}} −\alpha^{\mathrm{2}} }\:\mathrm{cos}\left(\mathrm{nx}\right)\:\Rightarrow \\ $$$$\frac{\mathrm{cos}\left(\alpha\mathrm{x}\right)}{\mathrm{sin}\left(\pi\alpha\right)}\:=\frac{\mathrm{1}}{\pi\alpha}\:−\frac{\mathrm{2}\alpha}{\pi}\:\sum_{\mathrm{n}=\mathrm{1}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{\mathrm{n}} \:\mathrm{cos}\left(\mathrm{nx}\right)}{\mathrm{n}^{\mathrm{2}} −\alpha^{\mathrm{2}} } \\ $$$$\mathrm{x}=\pi\:\Rightarrow\mathrm{cota}\left(\pi\alpha\right)\:=\frac{\mathrm{1}}{\pi\alpha}−\frac{\mathrm{2}\alpha}{\pi}\:\sum_{\mathrm{n}=\mathrm{1}} ^{\infty} \:\frac{\mathrm{1}}{\left(\mathrm{n}^{\mathrm{2}} −\alpha^{\mathrm{2}} \right)}\:\Rightarrow \\ $$$$\mathrm{cotan}\left(\pi\alpha\right)−\frac{\mathrm{1}}{\pi\alpha}\:=−\frac{\mathrm{2}\alpha}{\pi}\:\sum_{\mathrm{n}=\mathrm{1}} ^{\infty} \:\frac{\mathrm{1}}{\mathrm{n}^{\mathrm{2}} −\alpha^{\mathrm{2}} }\:\Rightarrow \\ $$$$\frac{\mathrm{cotan}\left(\pi\alpha\right)}{\alpha}−\frac{\mathrm{1}}{\pi\alpha^{\mathrm{2}} }\:=−\frac{\mathrm{2}}{\pi}\:\sum_{\mathrm{n}=\mathrm{1}} ^{\infty} \:\frac{\mathrm{1}}{\mathrm{n}^{\mathrm{2}} −\alpha^{\mathrm{2}} }\:\Rightarrow \\ $$$$\frac{\mathrm{d}}{\mathrm{d}\alpha}\left(\:\frac{\mathrm{cotan}\left(\pi\alpha\right)}{\alpha}−\frac{\mathrm{1}}{\pi\alpha^{\mathrm{2}} }\right)\:=\frac{\mathrm{2}}{\pi}\:\sum_{\mathrm{n}=\mathrm{1}} ^{\infty} \:\frac{−\mathrm{2}\alpha}{\left(\mathrm{n}^{\mathrm{2}} −\alpha^{\mathrm{2}} \right)^{\mathrm{2}} }\:=\frac{−\mathrm{4}\alpha}{\pi}\:\sum_{\mathrm{n}=\mathrm{1}} ^{\infty} \:\frac{\mathrm{1}}{\left(\mathrm{n}^{\mathrm{2}} −\alpha^{\mathrm{2}} \right)^{\mathrm{2}} }\:\Rightarrow \\ $$$$\sum_{\mathrm{n}=\mathrm{1}} ^{\infty} \:\frac{\mathrm{1}}{\left(\mathrm{n}^{\mathrm{2}} −\alpha^{\mathrm{2}} \right)^{\mathrm{2}} }\:=−\frac{\pi}{\mathrm{4}\alpha}×\frac{\mathrm{d}}{\mathrm{d}\alpha}\left(\frac{\mathrm{cotan}\left(\pi\alpha\right)}{\alpha}−\frac{\mathrm{1}}{\pi\alpha^{\mathrm{2}} }\right)\:\mathrm{rest}\:\mathrm{to}\:\mathrm{finish}\:\mathrm{the}\:\mathrm{calculus} \\ $$