Question Number 95767 by PengagumRahasiamu last updated on 27/May/20
Answered by prakash jain last updated on 27/May/20
$$\mathrm{characteric}\:\mathrm{equation} \\ $$$${x}^{\mathrm{4}} −\mathrm{3}{x}^{\mathrm{3}} +\mathrm{2}{x}^{\mathrm{2}} +\mathrm{2}{x}−\mathrm{4}=\mathrm{0} \\ $$$${x}^{\mathrm{4}} +{x}^{\mathrm{3}} −\mathrm{4}{x}^{\mathrm{3}} −\mathrm{4}{x}^{\mathrm{2}} +\mathrm{6}{x}^{\mathrm{2}} +\mathrm{6}{x}−\mathrm{4}{x}−\mathrm{4}=\mathrm{0} \\ $$$${x}^{\mathrm{3}} \left({x}+\mathrm{1}\right)−\mathrm{4}{x}^{\mathrm{2}} \left({x}+\mathrm{1}\right)+\mathrm{6}{x}\left({x}+\mathrm{1}\right)−\mathrm{4}\left({x}+\mathrm{1}\right)=\mathrm{00} \\ $$$$\left({x}+\mathrm{1}\right)\left({x}^{\mathrm{3}} −\mathrm{4}{x}^{\mathrm{2}} +\mathrm{6}{x}−\mathrm{4}\right)=\mathrm{0} \\ $$$$\left({x}+\mathrm{1}\right)\left({x}^{\mathrm{3}} −\mathrm{2}{x}^{\mathrm{2}} −\mathrm{2}{x}^{\mathrm{2}} +\mathrm{4}{x}+\mathrm{2}{x}−\mathrm{4}\right)=\mathrm{0} \\ $$$$\left({x}+\mathrm{1}\right)\left\{{x}^{\mathrm{2}} \left({x}−\mathrm{2}\right)−\mathrm{2}{x}\left({x}−\mathrm{2}\right)+\mathrm{2}\left({x}−\mathrm{2}\right)\right\}=\mathrm{0} \\ $$$$\left({x}+\mathrm{1}\right)\left({x}−\mathrm{2}\right)\left({x}^{\mathrm{2}} −\mathrm{2}{x}+\mathrm{2}\right)=\mathrm{0} \\ $$$$\mathrm{root},−\mathrm{1},\mathrm{2},\mathrm{1}+{i},\mathrm{1}−{i} \\ $$$${u}_{{n}} ={c}_{\mathrm{1}} \left(−\mathrm{1}\right)^{{n}} +{c}_{\mathrm{2}} \mathrm{2}^{{n}} +{c}_{\mathrm{3}} \left(\mathrm{1}+{i}\right)^{{n}} +{c}_{\mathrm{4}} \left(\mathrm{1}−{i}\right)^{{n}} \\ $$$${u}_{\mathrm{1}} =\mathrm{3}=−{c}_{\mathrm{1}} +\mathrm{2}{c}_{\mathrm{2}} +{c}_{\mathrm{3}} \left(\mathrm{1}+{i}\right)+{c}_{\mathrm{4}} \left(\mathrm{1}−{i}\right) \\ $$$$\mathrm{3}=−{c}_{\mathrm{1}} +\mathrm{2}{c}_{\mathrm{2}} +{c}_{\mathrm{3}} \left(\mathrm{1}+{i}\right)+{c}_{\mathrm{4}} \left(\mathrm{1}−{i}\right)\:\:\:\left({I}\right) \\ $$$${u}_{\mathrm{2}} =\mathrm{5}={c}_{\mathrm{1}} +\mathrm{4}{c}_{\mathrm{2}} +{c}_{\mathrm{3}} \left(\mathrm{1}+{i}\right)^{\mathrm{2}} +{c}_{\mathrm{4}} \left(\mathrm{1}−{i}\right)^{\mathrm{2}} \\ $$$$\mathrm{5}={c}_{\mathrm{1}} +\mathrm{4}{c}_{\mathrm{2}} +\mathrm{2}{ic}_{\mathrm{3}} −\mathrm{2}{ic}_{\mathrm{4}} \:\:\:\:\:\:\left({II}\right) \\ $$$${u}_{\mathrm{3}} =\mathrm{3}=−{c}_{\mathrm{1}} +\mathrm{8}{c}_{\mathrm{2}} +{c}_{\mathrm{3}} \left(\mathrm{1}+{i}\right)^{\mathrm{3}} +{c}_{\mathrm{4}} \left(\mathrm{1}−{i}\right)^{\mathrm{3}} \\ $$$$\mathrm{3}=−{c}_{\mathrm{1}} +\mathrm{8}{c}_{\mathrm{2}} +\mathrm{2}{i}\left(\mathrm{1}+{i}\right){c}_{\mathrm{3}} −\mathrm{2}{i}\left(\mathrm{1}−{i}\right){c}_{\mathrm{4}} \:\:\left({III}\right) \\ $$$${u}_{\mathrm{4}} =\mathrm{9}={c}_{\mathrm{1}} +\mathrm{16}{c}_{\mathrm{2}} +{c}_{\mathrm{3}} \left(\mathrm{1}+{i}\right)^{\mathrm{4}} +{c}_{\mathrm{4}} \left(\mathrm{1}−{i}\right)^{\mathrm{4}} \\ $$$$\mathrm{9}={c}_{\mathrm{1}} +\mathrm{16}{c}_{\mathrm{2}} −\mathrm{4}{c}_{\mathrm{3}} −\mathrm{4}{c}_{\mathrm{4}} \:\:\:\:\left({IV}\right) \\ $$$${FROM}\:\left({I}\right),\:\left({II}\right)\:,\left({III}\right)\:,\left({IV}\right) \\ $$$${c}_{\mathrm{1}} =\mathrm{1},{c}_{\mathrm{2}} =\mathrm{1},{c}_{\mathrm{3}} =\mathrm{1},{c}_{\mathrm{4}} =\mathrm{1} \\ $$$${u}_{{n}} =\left(−\mathrm{1}\right)^{{n}} +\mathrm{2}^{{n}} +\left(\mathrm{1}+{i}\right)^{{n}} +\left(\mathrm{1}−{i}\right)^{{n}} \\ $$
Commented by bobhans last updated on 27/May/20
$$\mathrm{great} \\ $$
Commented by PengagumRahasiamu last updated on 21/Jul/20
Thank you Sir