Menu Close

Question-95767




Question Number 95767 by PengagumRahasiamu last updated on 27/May/20
Answered by prakash jain last updated on 27/May/20
characteric equation  x^4 −3x^3 +2x^2 +2x−4=0  x^4 +x^3 −4x^3 −4x^2 +6x^2 +6x−4x−4=0  x^3 (x+1)−4x^2 (x+1)+6x(x+1)−4(x+1)=00  (x+1)(x^3 −4x^2 +6x−4)=0  (x+1)(x^3 −2x^2 −2x^2 +4x+2x−4)=0  (x+1){x^2 (x−2)−2x(x−2)+2(x−2)}=0  (x+1)(x−2)(x^2 −2x+2)=0  root,−1,2,1+i,1−i  u_n =c_1 (−1)^n +c_2 2^n +c_3 (1+i)^n +c_4 (1−i)^n   u_1 =3=−c_1 +2c_2 +c_3 (1+i)+c_4 (1−i)  3=−c_1 +2c_2 +c_3 (1+i)+c_4 (1−i)   (I)  u_2 =5=c_1 +4c_2 +c_3 (1+i)^2 +c_4 (1−i)^2   5=c_1 +4c_2 +2ic_3 −2ic_4       (II)  u_3 =3=−c_1 +8c_2 +c_3 (1+i)^3 +c_4 (1−i)^3   3=−c_1 +8c_2 +2i(1+i)c_3 −2i(1−i)c_4   (III)  u_4 =9=c_1 +16c_2 +c_3 (1+i)^4 +c_4 (1−i)^4   9=c_1 +16c_2 −4c_3 −4c_4     (IV)  FROM (I), (II) ,(III) ,(IV)  c_1 =1,c_2 =1,c_3 =1,c_4 =1  u_n =(−1)^n +2^n +(1+i)^n +(1−i)^n
charactericequationx43x3+2x2+2x4=0x4+x34x34x2+6x2+6x4x4=0x3(x+1)4x2(x+1)+6x(x+1)4(x+1)=00(x+1)(x34x2+6x4)=0(x+1)(x32x22x2+4x+2x4)=0(x+1){x2(x2)2x(x2)+2(x2)}=0(x+1)(x2)(x22x+2)=0root,1,2,1+i,1iun=c1(1)n+c22n+c3(1+i)n+c4(1i)nu1=3=c1+2c2+c3(1+i)+c4(1i)3=c1+2c2+c3(1+i)+c4(1i)(I)u2=5=c1+4c2+c3(1+i)2+c4(1i)25=c1+4c2+2ic32ic4(II)u3=3=c1+8c2+c3(1+i)3+c4(1i)33=c1+8c2+2i(1+i)c32i(1i)c4(III)u4=9=c1+16c2+c3(1+i)4+c4(1i)49=c1+16c24c34c4(IV)FROM(I),(II),(III),(IV)c1=1,c2=1,c3=1,c4=1un=(1)n+2n+(1+i)n+(1i)n
Commented by bobhans last updated on 27/May/20
great
great
Commented by PengagumRahasiamu last updated on 21/Jul/20
Thank you Sir

Leave a Reply

Your email address will not be published. Required fields are marked *