Question Number 96148 by Farruxjano last updated on 30/May/20
Commented by Farruxjano last updated on 30/May/20
$$\mathrm{Please}\:\mathrm{i}\:\mathrm{need}\:\mathrm{the}\:\mathrm{solution}\:\::\left(\right. \\ $$
Commented by john santu last updated on 30/May/20
$$\underset{\mathrm{0}} {\overset{\infty} {\int}}\:\frac{{dx}}{\mathrm{1}+{x}^{\mathrm{2}{n}} }\:=\:\frac{\pi{i}}{\mathrm{2}{n}}\:.\:\frac{\left({e}^{\frac{\pi{i}}{\mathrm{2}{n}}} \right)}{\left({e}^{\frac{\pi{i}}{{n}}} −\mathrm{1}\right)}\: \\ $$$$=\:\frac{\pi{i}}{\mathrm{2}{n}}\:.\:\frac{{e}^{\frac{\pi{i}}{\mathrm{2}{n}}} }{{e}^{\frac{\pi{i}}{\mathrm{2}{n}}} \:\left({e}^{\frac{\pi{i}}{\mathrm{2}{n}}} −{e}^{−\frac{\pi{i}}{\mathrm{2}{n}}} \right)} \\ $$$$=\:\frac{\pi}{\mathrm{2n}}.\:\frac{{i}}{{e}^{\frac{\pi{i}}{\mathrm{2}{n}}} −{e}^{−\frac{\pi{i}}{\mathrm{2}{n}}} }\:=\:\frac{\pi}{\mathrm{2n}}.\:\frac{\mathrm{1}}{\mathrm{sin}\:\left(\frac{\pi}{\mathrm{2n}}\right)} \\ $$$$=\:\frac{\pi}{\mathrm{2n}.\mathrm{sin}\:\left(\frac{\pi}{\mathrm{2n}}\right)}\:.\: \\ $$
Commented by mr W last updated on 30/May/20
$${everyone}\:{knows}:\:{when}\:{you}\:{post}\:{a} \\ $$$${question}\:{here},\:{you}\:{want}\:{to}\:{get}\:{answer}. \\ $$$${you}\:{don}'{t}\:{need}\:{to}\:{repeat}\:{again}\:{and} \\ $$$${again}\:{that}\:{you}\:{need}\:{a}\:{solution}. \\ $$$$ \\ $$$${but}\:{you}\:{should}\:{also}\:{know}:\:{nobody}\:{owes} \\ $$$${you}\:{anything}!\:{you}\:{are}\:{not}\:{the}\:{god} \\ $$$${and}\:{all}\:{others}\:{mustn}'{t}\:{dance}\:{to}\:{your} \\ $$$${tune}! \\ $$$$ \\ $$$${besides},\:{it}\:{disturbs}\:{the}\:{order}\:{of}\:{the} \\ $$$${forum}\:{when}\:{you}\:{repeat}\:{the}\:{same}\:{question} \\ $$$${by}\:{opening}\:{alot}\:{of}\:{new}\:{threads}. \\ $$
Commented by mr W last updated on 30/May/20
$${that}'{s}\:{why}\:{i}\:{red}\:{flagged}\:{this}\:{post}\:{of} \\ $$$${you}. \\ $$
Commented by mr W last updated on 30/May/20
$${i}\:{said}\:{i}\:{have}\:{red}\:{flagged}\:{this}\:{post}\:{and}\:{i} \\ $$$${also}\:{said}\:{why}.\:{who}\:{turned}\:{the}\:{red} \\ $$$${flag}\:{to}\:“{like}''\:{again}\:{and}\:{why}? \\ $$
Commented by Tinku Tara last updated on 30/May/20
$$\mathrm{Hi}\:\mathrm{Farruxjano} \\ $$$$\mathrm{I}\:\mathrm{see}\:\mathrm{this}\:\mathrm{is}\:\mathrm{just}\:\mathrm{probably}\:\mathrm{first}\:\mathrm{post} \\ $$$$\mathrm{from}\:\mathrm{you}.\:\mathrm{This}\:\mathrm{forum}\:\mathrm{to}\:\mathrm{enable}\: \\ $$$$\mathrm{people}\:\mathrm{to}\:\mathrm{learn}\:\mathrm{from}\:\mathrm{each}\:\mathrm{other}. \\ $$$$\mathrm{It}\:\mathrm{is}\:\mathrm{ok}\:\mathrm{to}\:\mathrm{write}\:\mathrm{part}\:\mathrm{answers} \\ $$$$\mathrm{to}\:\mathrm{show}\:\mathrm{ur}\:\mathrm{attempt}. \\ $$$$ \\ $$$$\mathrm{Just}\:\mathrm{dont}\:\mathrm{create}\:\mathrm{too}\:\mathrm{many}\:\mathrm{threads} \\ $$$$\mathrm{for}\:\mathrm{the}\:\mathrm{same}\:\mathrm{question}. \\ $$
Commented by Farruxjano last updated on 30/May/20
$$\mathrm{I}'\mathrm{m}\:\mathrm{terribly}\:\mathrm{sorry},\:\mathrm{ok},\:\mathrm{I}'\mathrm{ve}\:\mathrm{understood}! \\ $$
Commented by mr W last updated on 30/May/20
$${i}\:{appreciate}\:{it}\:{very}\:{much}\:{that}\:{you} \\ $$$${showed}\:{your}\:{understanding}\:{and}\:{said} \\ $$$${sorry}. \\ $$
Commented by Rasheed.Sindhi last updated on 30/May/20
$$\mathcal{T}{inku}\:\mathcal{T}{ara},\mathcal{T}{he}\:{developer} \\ $$$${I},{as}\:{an}\:{experiment}\:{marked}\:{the} \\ $$$${above}\:{post}\:{as}\:{red\_flaged}\:{when} \\ $$$${it}\:{was}\:{already}\:{red\_flagged}\:{by} \\ $$$${mr}\:{W}\:{sir}.\:{The}\:{result}\:{was}\:'{a}\:{like} \\ $$$${is}\:{added}'\:{to}\:{the}\:{post}\:{and}\:{the}\:{post} \\ $$$${was}\:{clear}\:{of}\:{red\_flag}!!!\left({Sorry}\:\:{mr}\:{W}\right){This} \\ $$$${behavior}\:{of}\:{the}\:{app}\:{is}\:{mathematically} \\ $$$${correct}\:{where}\:{negative}\:{of}\:{negative} \\ $$$${is}\:{always}\:{positive}….. \\ $$$$\mathcal{B}{ut}\:{I},\:{at}\:{the}\:{moment},\:{not}\:{thinking}\: \\ $$$${mathematically}\:{rigister}\:{it}\: \\ $$$${as}\:{a}\:{complaint}!!! \\ $$
Commented by Tinku Tara last updated on 30/May/20
$$\mathrm{Hi} \\ $$$$\mathrm{Can}\:\mathrm{you}\:\mathrm{update}\:\mathrm{to}\:\mathrm{latest}\:\mathrm{version}. \\ $$$$\mathrm{So}\:\mathrm{that}\:\mathrm{flag}\:\mathrm{will}\:\mathrm{not}\:\mathrm{be}\:\mathrm{treated} \\ $$$$\mathrm{as}\:\mathrm{like}. \\ $$$$\mathrm{If}\:\mathrm{likes}>\mathrm{redflags}\:\mathrm{then}\:\mathrm{flag}\:\mathrm{clears}. \\ $$
Commented by Sourav mridha last updated on 30/May/20
$$\mathrm{wr}\boldsymbol{{ong}}!!\mathrm{it}\boldsymbol{{should}}\:\boldsymbol{{be}}\:\frac{\mathrm{1}}{\mathrm{2}\boldsymbol{{n}}}\frac{\boldsymbol{\pi}}{\boldsymbol{{sin}}\left(\frac{\boldsymbol{\pi}}{\mathrm{2n}}\right)} \\ $$
Commented by mr W last updated on 31/May/20
$${rasheed}\:{sir}:\: \\ $$$${no}\:{need}\:{to}\:{be}\:{sorry}\:{sir}!\:{the}\:{app}\:{did} \\ $$$${what}\:{you}\:{didn}'{t}\:{want}\:{to}\:{do}.\:{i}\:{thought} \\ $$$${that}\:{guy}\:{changed}\:{the}\:{red}\:{flag}\:{by} \\ $$$${giving}\:{himself}\:{a}\:{like},\:{then}\:{i}'{d}\:{like} \\ $$$${to}\:{know}\:{why}\:{he}\:{did}\:{that}. \\ $$$${i}\:{hope}\:{the}\:{bug}\:{in}\:{app}\:{is}\:{fixed}\:{now}. \\ $$
Commented by Rasheed.Sindhi last updated on 31/May/20
$$\mathcal{T}{hanks}\:\mathcal{S}{ir}!\:{For}\:{this}\:{reason}\:{I}\:{said} \\ $$$${that}\:{a}\:{person}\:{shoudn}'{t}\:{have}\:{power} \\ $$$${to}\:{like}\:{his}\:{own}\:{post}! \\ $$
Commented by Tinku Tara last updated on 31/May/20
Please update to latest version from playstore or www.tinkutara.com Version 2.079.
Answered by Sourav mridha last updated on 30/May/20
$$\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{dx}}{\mathrm{1}+\left(\mathrm{x}^{\mathrm{n}} \right)^{\mathrm{2}} } \\ $$$$\boldsymbol{{replached}}\:\boldsymbol{{x}}^{\boldsymbol{{n}}} \:\boldsymbol{{by}}\:\boldsymbol{{tan}\alpha},\boldsymbol{{after}}\:\boldsymbol{{that}} \\ $$$$\boldsymbol{{your}}\:\boldsymbol{{integral}}\:\boldsymbol{{looks}}\:\boldsymbol{{like}} \\ $$$$\:\frac{\mathrm{1}}{\boldsymbol{{n}}}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \left(\boldsymbol{{sin}\alpha}\right)^{\frac{\mathrm{1}}{\boldsymbol{{n}}}−\mathrm{1}} .\left(\boldsymbol{{cos}\alpha}\right)^{\mathrm{1}−\frac{\mathrm{1}}{\boldsymbol{{n}}}} \boldsymbol{{d}\alpha} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}\boldsymbol{{n}}}\frac{\boldsymbol{\Gamma}\left(\frac{\mathrm{1}}{\mathrm{2}\boldsymbol{{n}}}\right).\boldsymbol{\Gamma}\left(\mathrm{1}−\frac{\mathrm{1}}{\mathrm{2}\boldsymbol{{n}}}\right)}{\boldsymbol{\Gamma}\left(\mathrm{1}\right)}=\frac{\mathrm{1}}{\mathrm{2}\boldsymbol{{n}}}\frac{\boldsymbol{\pi}}{{sin}\left(\frac{\boldsymbol{\pi}}{\mathrm{2n}}\right)}. \\ $$$$\mathrm{re}\boldsymbol{{member}}\:\boldsymbol{{it}}\:\boldsymbol{{is}}\:\boldsymbol{{only}}\:\boldsymbol{{possible}} \\ $$$$\boldsymbol{{when}}\:\:\:\:\:\frac{\mathrm{1}}{\boldsymbol{{n}}}=\boldsymbol{{m}}<\mathrm{1}. \\ $$
Answered by mathmax by abdo last updated on 30/May/20
$$\mathrm{changement}\:\:\mathrm{x}^{\mathrm{2n}} \:=\mathrm{t}\:\mathrm{give}\:\mathrm{x}\:=\mathrm{t}^{\frac{\mathrm{1}}{\mathrm{2n}}} \:\Rightarrow\:\mathrm{I}_{\mathrm{n}} =\frac{\mathrm{1}}{\mathrm{2n}}\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{\mathrm{t}^{\frac{\mathrm{1}}{\mathrm{2n}}−\mathrm{1}} }{\mathrm{1}+\mathrm{t}}\mathrm{dt} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2n}}×\frac{\pi}{\mathrm{sin}\left(\frac{\pi}{\mathrm{2n}}\right)}\Rightarrow\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{\mathrm{dx}}{\mathrm{1}+\mathrm{x}^{\mathrm{2n}} }\:=\frac{\pi}{\mathrm{2nsin}\left(\frac{\pi}{\mathrm{2n}}\right)} \\ $$$$\mathrm{i}\:\mathrm{have}\:\mathrm{used}\:\mathrm{that}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{\mathrm{t}^{\mathrm{a}−\mathrm{1}} }{\mathrm{1}+\mathrm{t}}\mathrm{dt}\:=\frac{\pi}{\mathrm{sin}\left(\pi\mathrm{a}\right)}\:\:\mathrm{if}\:\mathrm{0}<\mathrm{a}<\mathrm{1}\left(\mathrm{result}\:\mathrm{proved}\right) \\ $$