Menu Close

Question-96155




Question Number 96155 by pticantor last updated on 30/May/20
Commented by prakash jain last updated on 30/May/20
c=(√(4−(√(5+c))))  c^2 =4−(√(5+c))  c^2 −4=−(√(5+c))  c^4 −8c^2 +16=5+c  c^4 −8c^2 −c+11=0  Hence c is a solution to  y^4 −8y^2 −y+11=0
$${c}=\sqrt{\mathrm{4}−\sqrt{\mathrm{5}+{c}}} \\ $$$${c}^{\mathrm{2}} =\mathrm{4}−\sqrt{\mathrm{5}+{c}} \\ $$$${c}^{\mathrm{2}} −\mathrm{4}=−\sqrt{\mathrm{5}+{c}} \\ $$$${c}^{\mathrm{4}} −\mathrm{8}{c}^{\mathrm{2}} +\mathrm{16}=\mathrm{5}+{c} \\ $$$${c}^{\mathrm{4}} −\mathrm{8}{c}^{\mathrm{2}} −{c}+\mathrm{11}=\mathrm{0} \\ $$$$\mathrm{Hence}\:\mathrm{c}\:\mathrm{is}\:\mathrm{a}\:\mathrm{solution}\:\mathrm{to} \\ $$$${y}^{\mathrm{4}} −\mathrm{8}{y}^{\mathrm{2}} −{y}+\mathrm{11}=\mathrm{0} \\ $$
Commented by prakash jain last updated on 30/May/20
eqn1:  x^4 −8x^2 +x+11=0 (i)  y^4 −8y^2 −y+11=0  (ii)  if  α is a root of equation (ii)  then we can see (−α) will be  root of equation (i).  so eqn (i) can be written as  (x−a)(x−b)(x+c)(x+d)=0  comparing coeffcient of constant  term  abcd=11
$${eqn}\mathrm{1}: \\ $$$${x}^{\mathrm{4}} −\mathrm{8}{x}^{\mathrm{2}} +{x}+\mathrm{11}=\mathrm{0}\:\left(\mathrm{i}\right) \\ $$$${y}^{\mathrm{4}} −\mathrm{8}{y}^{\mathrm{2}} −{y}+\mathrm{11}=\mathrm{0}\:\:\left(\mathrm{ii}\right) \\ $$$$\mathrm{if}\:\:\alpha\:\mathrm{is}\:\mathrm{a}\:\mathrm{root}\:\mathrm{of}\:\mathrm{equation}\:\left(\mathrm{ii}\right) \\ $$$$\mathrm{then}\:\mathrm{we}\:\mathrm{can}\:\mathrm{see}\:\left(−\alpha\right)\:\mathrm{will}\:\mathrm{be} \\ $$$$\mathrm{root}\:\mathrm{of}\:\mathrm{equation}\:\left(\mathrm{i}\right). \\ $$$$\mathrm{so}\:\mathrm{eqn}\:\left(\mathrm{i}\right)\:\mathrm{can}\:\mathrm{be}\:\mathrm{written}\:\mathrm{as} \\ $$$$\left({x}−{a}\right)\left({x}−{b}\right)\left({x}+{c}\right)\left({x}+{d}\right)=\mathrm{0} \\ $$$$\mathrm{comparing}\:\mathrm{coeffcient}\:\mathrm{of}\:\mathrm{constant} \\ $$$$\mathrm{term} \\ $$$${abcd}=\mathrm{11} \\ $$
Commented by mr W last updated on 30/May/20
nice solution!
$${nice}\:{solution}! \\ $$
Commented by JDamian last updated on 30/May/20
Why do you repeat the same questions? this one is the same Q95967
Answered by pticantor last updated on 30/May/20
please i need help on question 3>>
$${please}\:{i}\:{need}\:{help}\:{on}\:{question}\:\mathrm{3}>> \\ $$
Commented by prakash jain last updated on 30/May/20
Please see comments.  I think abcd=11
$$\mathrm{Please}\:\mathrm{see}\:\mathrm{comments}. \\ $$$$\mathrm{I}\:\mathrm{think}\:{abcd}=\mathrm{11} \\ $$
Commented by pticantor last updated on 30/May/20
it′s correct sir thank you too much
$${it}'{s}\:{correct}\:\boldsymbol{{sir}}\:\boldsymbol{{thank}}\:\boldsymbol{{you}}\:\boldsymbol{{too}}\:\boldsymbol{{much}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *