Menu Close

Question-96231




Question Number 96231 by joki last updated on 30/May/20
Commented by prakash jain last updated on 30/May/20
x^3 y−3xy^3 =2a^4   (d/dx)(x^3 y−3xy^3 )=(d/dx)2a^4   3x^2 y+x^3 (dy/dx)−3y^3 −9xy^2 (dy/dx)=0  (dy/dx)(x^3 −9xy^2 )=3y^3 −3x^2 y  (dy/dx)=((3x^2 y−3y^3 )/(9xh^2 −x^3 ))
$${x}^{\mathrm{3}} {y}−\mathrm{3}{xy}^{\mathrm{3}} =\mathrm{2}{a}^{\mathrm{4}} \\ $$$$\frac{{d}}{{dx}}\left({x}^{\mathrm{3}} {y}−\mathrm{3}{xy}^{\mathrm{3}} \right)=\frac{{d}}{{dx}}\mathrm{2}{a}^{\mathrm{4}} \\ $$$$\mathrm{3}{x}^{\mathrm{2}} {y}+{x}^{\mathrm{3}} \frac{{dy}}{{dx}}−\mathrm{3}{y}^{\mathrm{3}} −\mathrm{9}{xy}^{\mathrm{2}} \frac{{dy}}{{dx}}=\mathrm{0} \\ $$$$\frac{{dy}}{{dx}}\left({x}^{\mathrm{3}} −\mathrm{9}{xy}^{\mathrm{2}} \right)=\mathrm{3}{y}^{\mathrm{3}} −\mathrm{3}{x}^{\mathrm{2}} {y} \\ $$$$\frac{{dy}}{{dx}}=\frac{\mathrm{3}{x}^{\mathrm{2}} {y}−\mathrm{3}{y}^{\mathrm{3}} }{\mathrm{9}{xh}^{\mathrm{2}} −{x}^{\mathrm{3}} } \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *