Menu Close

Question-96330




Question Number 96330 by joki last updated on 31/May/20
Commented by prakash jain last updated on 31/May/20
area of sector AOB=(1/2)αr2  area of △AOB       Let X be mid point lf AB       AX=BX=rsin(α/2)       AB=2rsin (α/2)       OX=rcos (α/2)       area of △AOB=(1/2)AB×OX        =(1/2)2r^2 sin (α/2)cos (α/2)=(1/2)r^2 sin α  given that area of △AOB=(1/3)(sector AOB)  (1/2)r^2 sin α=(1/3)((1/2)αr^2 )  ⇒3sin α=α  hence α satisfies equation  x=3sin x
$${area}\:{of}\:{sector}\:{AOB}=\frac{\mathrm{1}}{\mathrm{2}}\alpha{r}\mathrm{2} \\ $$$${area}\:{of}\:\bigtriangleup{AOB} \\ $$$$\:\:\:\:\:{Let}\:{X}\:\mathrm{be}\:\mathrm{mid}\:\mathrm{point}\:\mathrm{lf}\:{AB} \\ $$$$\:\:\:\:\:{AX}={BX}={r}\mathrm{sin}\frac{\alpha}{\mathrm{2}}\: \\ $$$$\:\:\:\:{AB}=\mathrm{2}{r}\mathrm{sin}\:\frac{\alpha}{\mathrm{2}} \\ $$$$\:\:\:\:\:{OX}={r}\mathrm{cos}\:\frac{\alpha}{\mathrm{2}} \\ $$$$\:\:\:\:\:{area}\:{of}\:\bigtriangleup{AOB}=\frac{\mathrm{1}}{\mathrm{2}}{AB}×{OX} \\ $$$$\:\:\:\:\:\:=\frac{\mathrm{1}}{\mathrm{2}}\mathrm{2}{r}^{\mathrm{2}} \mathrm{sin}\:\frac{\alpha}{\mathrm{2}}\mathrm{cos}\:\frac{\alpha}{\mathrm{2}}=\frac{\mathrm{1}}{\mathrm{2}}{r}^{\mathrm{2}} \mathrm{sin}\:\alpha \\ $$$${given}\:{that}\:{area}\:{of}\:\bigtriangleup{AOB}=\frac{\mathrm{1}}{\mathrm{3}}\left({sector}\:{AOB}\right) \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}{r}^{\mathrm{2}} \mathrm{sin}\:\alpha=\frac{\mathrm{1}}{\mathrm{3}}\left(\frac{\mathrm{1}}{\mathrm{2}}\alpha{r}^{\mathrm{2}} \right) \\ $$$$\Rightarrow\mathrm{3sin}\:\alpha=\alpha \\ $$$$\mathrm{hence}\:\alpha\:\mathrm{satisfies}\:\mathrm{equation} \\ $$$${x}=\mathrm{3sin}\:{x} \\ $$
Commented by prakash jain last updated on 31/May/20
(iii)  x_(n+1) =(1/2)(x_n +3sin x_n )  lim_(n→∞) x_n =β (assuming convergence)  β=(1/2)(β+3sin β)  ⇒β=3sin β  ⇒x_n  converges to solution of  equation x=3sin x
$$\left({iii}\right) \\ $$$${x}_{{n}+\mathrm{1}} =\frac{\mathrm{1}}{\mathrm{2}}\left({x}_{{n}} +\mathrm{3sin}\:{x}_{{n}} \right) \\ $$$$\underset{{n}\rightarrow\infty} {\mathrm{lim}}{x}_{{n}} =\beta\:\left({assuming}\:{convergence}\right) \\ $$$$\beta=\frac{\mathrm{1}}{\mathrm{2}}\left(\beta+\mathrm{3sin}\:\beta\right) \\ $$$$\Rightarrow\beta=\mathrm{3sin}\:\beta \\ $$$$\Rightarrow{x}_{{n}} \:\mathrm{converges}\:\mathrm{to}\:\mathrm{solution}\:\mathrm{of} \\ $$$$\mathrm{equation}\:{x}=\mathrm{3sin}\:{x} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *