Question-96428 Tinku Tara June 4, 2023 None 0 Comments FacebookTweetPin Question Number 96428 by Hassanfathi last updated on 01/Jun/20 Answered by Sourav mridha last updated on 01/Jun/20 y″(t)−3y′(t)+2y(t)=4usingLaplacetransforms2y(s)−sy(0)−y′(0)−3sy(s)+3y(0)+2y(s)=4sgiveny(0)=1andy′(0)=0⇒y(s)[s2−3s+2]=4s+s−3⇒y(s)=[4s+s−3](s−2)(s−1)⇒L−1[y(s)]=L−1[4s(s−2)(s−1)+s−3(s−2)(s−1)]⇒y(t)=2L−1[1s−(s−3)(s−2)(s−1)]+L−1[1s−1]−L−1[1s−2]+L−1[1s−1]⇒y(t)=2L−1[1s]−2L−1[1(s−1)]+2L−1[1(s−2)]−2L−1[1s−1]+2et−e2t⇒y(t)=2−2et+e2t….(Ans) Answered by mathmax by abdo last updated on 01/Jun/20 y″(t)−3y′(t)+2y(t)=4⇒L(y″)−3L(y′)+2L(y)=4t⇒t2L(y)−ty(0)−y′(0)−3(tL(y)−y(o))+2L(y)=4t⇒(t2−3t+2)L(y)=4t+ty(0)+y′(0)−3y(0)⇒(t2−3t+2)L(y)=4t+t−3⇒L(y)=4t(t2−3t+2)+t−3t2−3t+2⇒y=4L−1(1t(t2−3t+2))+L−1(t−3t2−3t+2)f(t)=t−3t2−3t+2=t−3t2−t−2(t−1)=t−3t(t−1)−2(t−1)=t−3(t−1)(t−2)=at−1+bt−2⇒a=−2−1=2,b=−11=−1⇒f(t)=2t−1−1t−2⇒L−1(f(x))=2et−e2tg(t)=1t(t2−3t+2)=1t(t−1)(t−2)=at+bt−1+ct−2a=12,b=−1,c=12⇒g(t)=12t−1t−1+12(t−2)⇒L−1(g(t))=12−et+12e2t⇒y=2−4et+2e2t+2et−e2t⇒y(t)=e2t−2et+2 Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-96429Next Next post: 0-1-ln-2-x-1-x-2-dx- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.