Menu Close

Question-96428




Question Number 96428 by Hassanfathi last updated on 01/Jun/20
Answered by Sourav mridha last updated on 01/Jun/20
y^(′′) (t)−3y^′ (t)+2y(t)=4  using Laplace transform  s^2 y(s)−sy(0)−y^′ (0)−3sy(s)+3y(0)                                          +2y(s)=(4/s)  given y(0)=1 and y^′ (0)=0  ⇒y(s)[s^2 −3s+2]=(4/s)+s−3  ⇒y(s)=(([(4/s)+s−3])/((s−2)(s−1)))  ⇒L^(−1) [y(s)]=L^(−1) [(4/(s(s−2)(s−1)))+((s−3)/((s−2)(s−1)))]  ⇒y(t)=2L^(−1) [(1/s)−(((s−3))/((s−2)(s−1)))]              +L^(−1) [(1/(s−1))]−L^(−1) [(1/(s−2))]+L^(−1) [(1/(s−1))]  ⇒y(t)=2L^(−1) [(1/s)]−2L^(−1) [(1/((s−1)))]                 +2L^(−1) [(1/((s−2)))]−2L^(−1) [(1/(s−1))]                  +2e^t −e^(2t)   ⇒y(t)=2−2e^t +e^(2t) ....(Ans)
y(t)3y(t)+2y(t)=4usingLaplacetransforms2y(s)sy(0)y(0)3sy(s)+3y(0)+2y(s)=4sgiveny(0)=1andy(0)=0y(s)[s23s+2]=4s+s3y(s)=[4s+s3](s2)(s1)L1[y(s)]=L1[4s(s2)(s1)+s3(s2)(s1)]y(t)=2L1[1s(s3)(s2)(s1)]+L1[1s1]L1[1s2]+L1[1s1]y(t)=2L1[1s]2L1[1(s1)]+2L1[1(s2)]2L1[1s1]+2ete2ty(t)=22et+e2t.(Ans)
Answered by mathmax by abdo last updated on 01/Jun/20
y^(′′) (t)−3y^′ (t)+2y(t) =4 ⇒L(y^(′′) )−3L(y^′ )+2L(y) =(4/t) ⇒  t^2 L(y)−ty(0)−y^′ (0)−3(tL(y)−y(o))+2L(y) =(4/t) ⇒  (t^2 −3t +2)L(y) =(4/t) +ty(0)+y^′ (0)−3y(0) ⇒  (t^2 −3t+2)L(y) =(4/t) +t−3 ⇒L(y) =(4/(t(t^2 −3t +2))) +((t−3)/(t^2 −3t +2)) ⇒  y =4L^(−1) ((1/(t(t^2 −3t+2))))+L^(−1) (((t−3)/(t^2 −3t +2)))  f(t) =((t−3)/(t^2 −3t +2)) =((t−3)/(t^2 −t−2(t−1))) =((t−3)/(t(t−1)−2(t−1))) =((t−3)/((t−1)(t−2)))  =(a/(t−1)) +(b/(t−2)) ⇒a =((−2)/(−1)) =2  ,  b =((−1)/1) =−1 ⇒f(t) =(2/(t−1))−(1/(t−2)) ⇒  L^(−1) (f(x)) =2e^t −e^(2t)   g(t) =(1/(t(t^2 −3t +2))) =(1/(t(t−1)(t−2))) =(a/t) +(b/(t−1)) +(c/(t−2))  a =(1/2)  , b =−1  ,  c =(1/2) ⇒g(t) =(1/(2t))−(1/(t−1)) +(1/(2(t−2))) ⇒  L^(−1) (g(t)) =(1/2) −e^t  +(1/2)e^(2t)  ⇒y =2 −4e^t  +2e^(2t)   +2e^t −e^(2t)  ⇒  y(t) =e^(2t)  −2e^t  +2
y(t)3y(t)+2y(t)=4L(y)3L(y)+2L(y)=4tt2L(y)ty(0)y(0)3(tL(y)y(o))+2L(y)=4t(t23t+2)L(y)=4t+ty(0)+y(0)3y(0)(t23t+2)L(y)=4t+t3L(y)=4t(t23t+2)+t3t23t+2y=4L1(1t(t23t+2))+L1(t3t23t+2)f(t)=t3t23t+2=t3t2t2(t1)=t3t(t1)2(t1)=t3(t1)(t2)=at1+bt2a=21=2,b=11=1f(t)=2t11t2L1(f(x))=2ete2tg(t)=1t(t23t+2)=1t(t1)(t2)=at+bt1+ct2a=12,b=1,c=12g(t)=12t1t1+12(t2)L1(g(t))=12et+12e2ty=24et+2e2t+2ete2ty(t)=e2t2et+2

Leave a Reply

Your email address will not be published. Required fields are marked *