Menu Close

Question-96636




Question Number 96636 by O Predador last updated on 03/Jun/20
Commented by hknkrc46 last updated on 03/Jun/20
5^x −(9,8)^x =7^x  ⇒ 5^x −(((49)/5))^x =7^x   ⇒ 5^x −(7^(2x) /5^x )=7^x  ⇒ 5^(2x) −7^(2x) =5^x ∙7^x   ⇒ ((5^(2x) −7^(2x) )/(5^x ∙7^x ))=1 ⇒ (5^x /7^x )−(7^x /5^x )=1  (5^x /7^x )=((5/7))^x =t ⇒ t−(1/t)=1 ⇒ t^2 −t−1=0  ⇒t=((−(−1)∓(√((−1)^2 −4∙1∙(−1))))/(2∙1))  ⇒((5/7))^x =((1∓(√5))/2) ⇒0 < ((5/7))^x = ((1+(√5))/2)  ⇒ln ((5/7))^x = ln ((1+(√5))/2)  ⇒ xln ((5/7))= ln ((1+(√5))/2) ⇒ x=((ln ((1+(√5))/2))/(ln (5/7)))
5x(9,8)x=7x5x(495)x=7x5x72x5x=7x52x72x=5x7x52x72x5x7x=15x7x7x5x=15x7x=(57)x=tt1t=1t2t1=0t=(1)(1)241(1)21(57)x=1520<(57)x=1+52ln(57)x=ln1+52xln(57)=ln1+52x=ln1+52ln57
Answered by mr W last updated on 03/Jun/20
((1/(1.4)))^x −(1.4)^x =1  (1.4)^(2x) +(1.4)^x −1=0  1.4^x =(((√5)−1)/2)  ⇒x=((ln ((√5)−1)−ln 2)/(ln 7−ln 5))≈−1.4302
(11.4)x(1.4)x=1(1.4)2x+(1.4)x1=01.4x=512x=ln(51)ln2ln7ln51.4302
Commented by O Predador last updated on 03/Jun/20
 or  log_(7/5) (((−1+(√5))/2))  ?
orlog75(1+52)?
Commented by mr W last updated on 03/Jun/20
yes
yes
Commented by O Predador last updated on 03/Jun/20
 Thank you!
Thankyou!
Answered by 1549442205 last updated on 03/Jun/20
Equation is equivalent to  5^x −(((49)/5))^x =7^x ⇔5^(2x) −7^(2x) =7^x ×5^x (1)  ⇔((5/7))^x −((7/5))^x =1  et ((7/5))^x =y(y>0)  ⇒(1/y)−y=1⇔y^2 +y−1=0  ⇒y=((−1+(√5))/2)⇒((7/5))^t =((−1+(√5))/2)  ⇒x=((ln(((−1+(√5))/2)))/(ln(7/5)))≈−1.43016
Equationisequivalentto5x(495)x=7x52x72x=7x×5x(1)(57)x(75)x=1et(75)x=y(y>0)1yy=1y2+y1=0y=1+52(75)t=1+52x=ln(1+52)ln751.43016

Leave a Reply

Your email address will not be published. Required fields are marked *