Menu Close

Question-96693




Question Number 96693 by 175 last updated on 03/Jun/20
Answered by abdomathmax last updated on 04/Jun/20
A_n =∫  (dx/(1+tan^n x)) =_(tanx =t)     ∫  (dt/((1+t^2 )(1+t^n )))  let decompose F(t) =(1/((t^2 +1)(t^n  +1))) =(1/((t−i(t+i)(t^n  +1)))  ⇒F(t) =(a/(t−i)) +(b/(t+i)) +Σ_(p=0) ^(n−1)  (a_p /(t−z_p ))  z_p  roots of  t^n  +1=0 ⇒z_p =e^(i(((2k+1)π)/p))   p ∈[[0,n−1]]  a =(1/(2i(1+i^n ))) and b =((−1)/(2i(1+(−i)^n ))) ⇒  F(t)=(1/(2i(i^n +1)(t−i))) −(1/(2i(1+(−i)^n )(t+i))) +Σ_(p=0) ^(n−1)  (a_p /(t−z_p ))  =(1/(2i)){(((1+(−i)^n )(t+i)−(1+i^n )(t−i))/((1+i^n )(1+(−1)^n )(t^2  +1)))}  +Σ_(p=0) ^(n−1)  (a_p /(t−z_p ))  =((αt +β)/(t^2  +1)) +Σ_(p=0) ^(n−1)  (a_p /(t−z_p )) ⇒  (1/((t^2 +1)(t^n  +1)))−((αt+β)/(t^2  +1)) =Σ_(p=0) ^(n−1)  (a_p /(t−z_p )) ⇒  (1/((t^2  +1))){(1/(t^n +1))−(αt +β)} =Σ(...) ⇒  ((1−(αt +β)(t^n  +1))/((t^2 +1)(t^n  +1))) =Σ_(p=0) ^∞  (a_p /(t−z_p ))  a_p =((f(z_(p)) )/(g^′ (z_p )))   we have f(z_p ) =((1−(αz_p +β)(z_p ^n  +1))/((z_p ^2  +1)(z_p ^n  +1)))  g(t) =t^(n+2)  +t^2  +t^n  +1 ⇒  g^′ (t) =(n+2)t^(n+1)  +nt^(n−1)  +2t ⇒  g^′ (z_p ) =(n+2)z_p ^(n+1)  +nz_p ^(n−1)  +2z_p  ⇒  ∫ F(t)dt =aln(t−i)+bln(t+i)+Σ_(p=0) ^(n−1) a_p ln(t−z_p ) +C
An=dx1+tannx=tanx=tdt(1+t2)(1+tn)letdecomposeF(t)=1(t2+1)(tn+1)=1(ti(t+i)(tn+1)F(t)=ati+bt+i+p=0n1aptzpzprootsoftn+1=0zp=ei(2k+1)πpp[[0,n1]]a=12i(1+in)andb=12i(1+(i)n)F(t)=12i(in+1)(ti)12i(1+(i)n)(t+i)+p=0n1aptzp=12i{(1+(i)n)(t+i)(1+in)(ti)(1+in)(1+(1)n)(t2+1)}+p=0n1aptzp=αt+βt2+1+p=0n1aptzp1(t2+1)(tn+1)αt+βt2+1=p=0n1aptzp1(t2+1){1tn+1(αt+β)}=Σ()1(αt+β)(tn+1)(t2+1)(tn+1)=p=0aptzpap=f(zp)g(zp)wehavef(zp)=1(αzp+β)(zpn+1)(zp2+1)(zpn+1)g(t)=tn+2+t2+tn+1g(t)=(n+2)tn+1+ntn1+2tg(zp)=(n+2)zpn+1+nzpn1+2zpF(t)dt=aln(ti)+bln(t+i)+p=0n1apln(tzp)+C
Commented by 175 last updated on 04/Jun/20
nice
Commented by mathmax by abdo last updated on 04/Jun/20
thankx
thankx

Leave a Reply

Your email address will not be published. Required fields are marked *