Menu Close

Question-96784




Question Number 96784 by 175 last updated on 04/Jun/20
Answered by Sourav mridha last updated on 04/Jun/20
 =∫((2+x^2 +x)/(x^2 (√(x^2 +x+1)))) dx +(2/x)                   =∫((d(x+(1/2)))/( (√((x+(1/2))^2 +(((√3)/2))^2 ))))+(2/x)                                  −2∫d[((√(x^2 +x+1))/x)]+c  =ln[(x+(1/2))+(√(x^2 +x+1)) ]               −2.((√(x^2 +x+1))/x)+(2/x)+c
$$\:=\int\frac{\mathrm{2}+\boldsymbol{{x}}^{\mathrm{2}} +\boldsymbol{{x}}}{\boldsymbol{{x}}^{\mathrm{2}} \sqrt{\boldsymbol{{x}}^{\mathrm{2}} +\boldsymbol{{x}}+\mathrm{1}}}\:\boldsymbol{{dx}}\:+\frac{\mathrm{2}}{\boldsymbol{{x}}}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\: \\ $$$$=\int\frac{\boldsymbol{{d}}\left(\boldsymbol{{x}}+\frac{\mathrm{1}}{\mathrm{2}}\right)}{\:\sqrt{\left(\boldsymbol{{x}}+\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{2}} +\left(\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\right)^{\mathrm{2}} }}+\frac{\mathrm{2}}{\boldsymbol{{x}}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:−\mathrm{2}\int\boldsymbol{{d}}\left[\frac{\sqrt{\boldsymbol{{x}}^{\mathrm{2}} +\boldsymbol{{x}}+\mathrm{1}}}{\boldsymbol{{x}}}\right]+\boldsymbol{{c}} \\ $$$$=\boldsymbol{{ln}}\left[\left(\boldsymbol{{x}}+\frac{\mathrm{1}}{\mathrm{2}}\right)+\sqrt{\boldsymbol{{x}}^{\mathrm{2}} +\boldsymbol{{x}}+\mathrm{1}}\:\right] \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:−\mathrm{2}.\frac{\sqrt{\boldsymbol{{x}}^{\mathrm{2}} +\boldsymbol{{x}}+\mathrm{1}}}{\boldsymbol{{x}}}+\frac{\mathrm{2}}{\boldsymbol{{x}}}+\boldsymbol{{c}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *