Menu Close

Question-97173




Question Number 97173 by 675480065 last updated on 06/Jun/20
Answered by Sourav mridha last updated on 06/Jun/20
 I=(2/๐›‘)โˆซ_(โˆ’(ฯ€/4)) ^((+ฯ€)/4) (dx/((1+e^(sinx) )(2โˆ’cos2x)))...(i)  and also I=(2/๐›‘)โˆซ_(+(ฯ€/4)) ^(โˆ’(๐›‘/4)) ((d(โˆ’x))/((1+e^(sin(โˆ’x)) )(2โˆ’cos2(โˆ’x))))        =(2/๐›‘)โˆซ_(โˆ’(๐›‘/4)) ^(+(๐›‘/4)) (e^(sin(x)) /((1+e^(sin(x)) )(2โˆ’cos2x)))dx.....(ii)  now (i)+(ii) we get,  2I=(2/๐›‘)โˆซ_(โˆ’(๐›‘/4)) ^(+(๐›‘/4)) (dx/(2sin^2 (x)+1))  [even f^n ]so  I=โˆ’(2/๐›‘)โˆซ_0 ^(+(๐›‘/4)) ((d(cotx))/(((โˆš3))^2 +(cot(x))^2 ))       =โˆ’(2/๐›‘).(1/( (โˆš3)))[tan^(โˆ’1) (((cotx)/( (โˆš3))))]_0 ^(+(๐›‘/4))         =โˆ’(2/๐›‘).(1/( (โˆš3)))[(๐›‘/6)โˆ’(๐›‘/2)]=(2/(3(โˆš3)))  so now I^2 =(4/(27))โ‡’27I^2 =4
I=2ฯ€โˆซโˆ’ฯ€4+ฯ€4dx(1+esinx)(2โˆ’cos2x)โ€ฆ(i)andalsoI=2ฯ€โˆซ+ฯ€4โˆ’ฯ€4d(โˆ’x)(1+esin(โˆ’x))(2โˆ’cos2(โˆ’x))=2ฯ€โˆซโˆ’ฯ€4+ฯ€4esin(x)(1+esin(x))(2โˆ’cos2x)dxโ€ฆ..(ii)now(i)+(ii)weget,2I=2ฯ€โˆซโˆ’ฯ€4+ฯ€4dx2sin2(x)+1[evenfn]soI=โˆ’2ฯ€โˆซ0+ฯ€4d(cotx)(3)2+(cot(x))2=โˆ’2ฯ€.13[tanโˆ’1(cotx3)]0+ฯ€4=โˆ’2ฯ€.13[ฯ€6โˆ’ฯ€2]=233sonowI2=427โ‡’27I2=4
Commented by 675480065 last updated on 06/Jun/20
i dont understand from (i)+(ik)
idontunderstandfrom(i)+(ik)
Commented by Sourav mridha last updated on 07/Jun/20
try to do step by step โˆ’โˆ’  at first add (i)+(ii)  then you will see (1+e^(sin(x)) ) is vanish.  now its remain (2โˆ’cos2x)at denomenator.  this =(1/(2sin^2 (x)+1))=((cosec^2 (x))/(3+cot^2 (x)))  now goes on and cheack with my  sol^n .
trytodostepbystepโˆ’โˆ’atfirstadd(i)+(ii)thenyouwillsee(1+esin(x))isvanish.nowitsremain(2โˆ’cos2x)atdenomenator.this=12sin2(x)+1=cosec2(x)3+cot2(x)nowgoesonandcheackwithmysoln.

Leave a Reply

Your email address will not be published. Required fields are marked *