Question Number 97305 by eidmarie last updated on 07/Jun/20
Answered by MJS last updated on 07/Jun/20
$$\mathrm{crazy}\:\mathrm{question} \\ $$$$\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\mathrm{the}\:\mathrm{integral}\:\mathrm{is} \\ $$$$−\mathrm{6}+\frac{\mathrm{97}\sqrt{\mathrm{11}}}{\mathrm{55}}\mathrm{arctan}\:\frac{\sqrt{\mathrm{11}}}{\mathrm{3}}\:+\frac{\mathrm{1}}{\mathrm{10}}\left(\mathrm{9ln}\:\mathrm{5}\:−\mathrm{28ln}\:\mathrm{2}\right) \\ $$$$\Rightarrow \\ $$$${a}=−\mathrm{6}+\frac{\mathrm{97}\sqrt{\mathrm{11}}}{\mathrm{55}}\mathrm{arctan}\:\frac{\sqrt{\mathrm{11}}}{\mathrm{3}} \\ $$$${b}=\mathrm{2}^{−\mathrm{14}/\mathrm{5}} \mathrm{5}^{\mathrm{9}/\mathrm{10}} \\ $$
Commented by bobhans last updated on 07/Jun/20
$$\mathrm{hahaha} \\ $$
Commented by ahmedeid last updated on 07/Jun/20
$${hahahahaha}\:{can}\:{you}\:{complete}\:{it}\:{by}\:{steps}? \\ $$
Commented by mathmax by abdo last updated on 08/Jun/20
$$\mathrm{this}\:\mathrm{integral}\:\mathrm{is}\:\mathrm{solved}\:\mathrm{see}\:\mathrm{the}\:\mathrm{platform} \\ $$