Menu Close

Question-97460




Question Number 97460 by mathocean1 last updated on 08/Jun/20
Commented by mathocean1 last updated on 08/Jun/20
AB+BC+AC=...?
AB+BC+AC=?
Commented by MJS last updated on 08/Jun/20
simply apply law of cosines  a=400 b=300 β=105°  b^2 =a^2 +c^2 −2ac cos β
simplyapplylawofcosinesa=400b=300β=105°b2=a2+c22accosβ
Answered by smridha last updated on 08/Jun/20
AC^→ =BC^→ −AB^→   ∣AC∣=(√((300)^2 +(400)^2 −2(300)(400)cos(105^° )))              =558.673m  AB+BC+AC=300+400+558.673                                    =1258.673m
AC=BCABAC∣=(300)2+(400)22(300)(400)cos(105°)=558.673mAB+BC+AC=300+400+558.673=1258.673m
Commented by 1549442205 last updated on 08/Jun/20
cos 105°=−sin15°=−(√((1−cos30°)/2)) =  −(√((2−(√3))/4))=−(((√3) −1)/(2(√2)))=((−((√6)−(√2) ))/4)
cos105°=sin15°=1cos30°2=234=3122=(62)4

Leave a Reply

Your email address will not be published. Required fields are marked *