Menu Close

Question-97555




Question Number 97555 by 175 last updated on 08/Jun/20
Commented by bemath last updated on 08/Jun/20
yes nice problem
$$\mathrm{yes}\:\mathrm{nice}\:{problem}\: \\ $$
Commented by prakash jain last updated on 08/Jun/20
f(x)=1
$${f}\left({x}\right)=\mathrm{1} \\ $$
Commented by mathmax by abdo last updated on 08/Jun/20
nice problem and nicefunction and nice question..
$$\mathrm{nice}\:\mathrm{problem}\:\mathrm{and}\:\mathrm{nicefunction}\:\mathrm{and}\:\mathrm{nice}\:\mathrm{question}.. \\ $$
Commented by 175 last updated on 08/Jun/20
I want a non-static function
Commented by prakash jain last updated on 08/Jun/20
f(x) is R→R?
$${f}\left({x}\right)\:\mathrm{is}\:\mathbb{R}\rightarrow\mathbb{R}? \\ $$
Commented by MJS last updated on 08/Jun/20
I′ve wanted so many things...
$$\mathrm{I}'\mathrm{ve}\:\mathrm{wanted}\:\mathrm{so}\:\mathrm{many}\:\mathrm{things}… \\ $$
Commented by bobhans last updated on 09/Jun/20
very...nice
$$\mathrm{very}…\mathrm{nice} \\ $$
Commented by prakash jain last updated on 09/Jun/20
Hi 175,  Can you please specify any  additional constraints on solution.  A non-constant solution can be  given in many different ways.  Is f(x) continuous?  Question should specify.
$$\mathrm{Hi}\:\mathrm{175}, \\ $$$$\mathrm{Can}\:\mathrm{you}\:\mathrm{please}\:\mathrm{specify}\:\mathrm{any} \\ $$$$\mathrm{additional}\:\mathrm{constraints}\:\mathrm{on}\:\mathrm{solution}. \\ $$$$\mathrm{A}\:\mathrm{non}-\mathrm{constant}\:\mathrm{solution}\:\mathrm{can}\:\mathrm{be} \\ $$$$\mathrm{given}\:\mathrm{in}\:\mathrm{many}\:\mathrm{different}\:\mathrm{ways}. \\ $$$$\mathrm{Is}\:{f}\left({x}\right)\:\mathrm{continuous}? \\ $$$$\mathrm{Question}\:\mathrm{should}\:\mathrm{specify}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *