Question-97557 Tinku Tara June 4, 2023 Geometry 0 Comments FacebookTweetPin Question Number 97557 by Power last updated on 08/Jun/20 Answered by mr W last updated on 08/Jun/20 ∠CBE=∠EBD=θ=12(π2−α)⇒2θ=π2−αBD=2rsinαEB=2rcosθED=EB2+BD2−2×EB×BD×cosθED=4r2cos2θ+4r2sin2α−8r2sinαED=2r1cos2θ+sin2α−2sinαsinφEB=sinθEDsinφ=EBsinθED=2rsinθcosθ2r1cos2θ+sin2α−2sinαsinφ=sinθ1+(sin2α−2sinα)cos2θsinφ=1−cos2θ2+(sin2α−2sinα)(cos2θ+1)sinφ=1−sinα2−(2−sinα)(1+sinα)sinα⇒φ=sin−11−sinα2−(2−sinα)(1+sinα)sinα Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-97555Next Next post: Question-163098 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.