Menu Close

Question-97557




Question Number 97557 by Power last updated on 08/Jun/20
Answered by mr W last updated on 08/Jun/20
∠CBE=∠EBD=θ=(1/2)((π/2)−α)  ⇒2θ=(π/2)−α  BD=2r sin α  EB=((2r)/(cos θ))  ED=(√(EB^2 +BD^2 −2×EB×BD×cos θ))  ED=(√(((4r^2 )/(cos^2  θ))+4r^2 sin^2  α−8r^2 sin α))  ED=2r(√((1/(cos^2  θ))+sin^2  α−2 sin α))  ((sin ϕ)/(EB))=((sin θ)/(ED))  sin ϕ=((EB sin θ)/(ED))=((2r sin θ)/(cos θ 2r(√((1/(cos^2  θ))+sin^2  α−2 sin α))))  sin ϕ=((sin θ)/( (√(1+(sin^2  α−2 sin α)cos^2  θ))))  sin ϕ=((√(1−cos 2 θ))/( (√(2+(sin^2  α−2 sin α)(cos 2θ+1)))))  sin ϕ=((√(1−sin α))/( (√(2−(2−sinα)(1+sin α)sin α))))  ⇒ϕ=sin^(−1) ((√(1−sin α))/( (√(2−(2−sinα)(1+sin α)sin α))))
CBE=EBD=θ=12(π2α)2θ=π2αBD=2rsinαEB=2rcosθED=EB2+BD22×EB×BD×cosθED=4r2cos2θ+4r2sin2α8r2sinαED=2r1cos2θ+sin2α2sinαsinφEB=sinθEDsinφ=EBsinθED=2rsinθcosθ2r1cos2θ+sin2α2sinαsinφ=sinθ1+(sin2α2sinα)cos2θsinφ=1cos2θ2+(sin2α2sinα)(cos2θ+1)sinφ=1sinα2(2sinα)(1+sinα)sinαφ=sin11sinα2(2sinα)(1+sinα)sinα

Leave a Reply

Your email address will not be published. Required fields are marked *