Menu Close

Question-97564




Question Number 97564 by Power last updated on 08/Jun/20
Answered by Rio Michael last updated on 09/Jun/20
Ones our teacher put this on the board, we puzzeled even  the geniuses of our class tried it out but it turned out  even the teacher couldn′t find a particular summation formula  which described this series even to an approximate. Some   1945 folks had tried this problem and concluded that it can only  be programmed hence no exact summation formula exist for it.  I tried it out and noticed(like others) that there is no formula  to compute this sum!  but we can obtain a bound to which this series falls  : n(1 + (1/(4(n−1)))) < S < n^n (1 + (2/(e(n−1))))  please do well to search for the programming codes for this series.
$$\mathrm{Ones}\:\mathrm{our}\:\mathrm{teacher}\:\mathrm{put}\:\mathrm{this}\:\mathrm{on}\:\mathrm{the}\:\mathrm{board},\:\mathrm{we}\:\mathrm{puzzeled}\:\mathrm{even} \\ $$$$\mathrm{the}\:\mathrm{geniuses}\:\mathrm{of}\:\mathrm{our}\:\mathrm{class}\:\mathrm{tried}\:\mathrm{it}\:\mathrm{out}\:\mathrm{but}\:\mathrm{it}\:\mathrm{turned}\:\mathrm{out} \\ $$$$\mathrm{even}\:\mathrm{the}\:\mathrm{teacher}\:\mathrm{couldn}'\mathrm{t}\:\mathrm{find}\:\mathrm{a}\:\mathrm{particular}\:\mathrm{summation}\:\mathrm{formula} \\ $$$$\mathrm{which}\:\mathrm{described}\:\mathrm{this}\:\mathrm{series}\:\mathrm{even}\:\mathrm{to}\:\mathrm{an}\:\mathrm{approximate}.\:\mathrm{Some}\: \\ $$$$\mathrm{1945}\:\mathrm{folks}\:\mathrm{had}\:\mathrm{tried}\:\mathrm{this}\:\mathrm{problem}\:\mathrm{and}\:\mathrm{concluded}\:\mathrm{that}\:\mathrm{it}\:\mathrm{can}\:\mathrm{only} \\ $$$$\mathrm{be}\:\mathrm{programmed}\:\mathrm{hence}\:\mathrm{no}\:\mathrm{exact}\:\mathrm{summation}\:\mathrm{formula}\:\mathrm{exist}\:\mathrm{for}\:\mathrm{it}. \\ $$$$\mathrm{I}\:\mathrm{tried}\:\mathrm{it}\:\mathrm{out}\:\mathrm{and}\:\mathrm{noticed}\left(\mathrm{like}\:\mathrm{others}\right)\:\mathrm{that}\:\mathrm{there}\:\mathrm{is}\:\boldsymbol{\mathrm{no}}\:\boldsymbol{\mathrm{formula}} \\ $$$$\boldsymbol{\mathrm{to}}\:\boldsymbol{\mathrm{compute}}\:\boldsymbol{\mathrm{this}}\:\boldsymbol{\mathrm{sum}}! \\ $$$$\mathrm{but}\:\mathrm{we}\:\mathrm{can}\:\mathrm{obtain}\:\mathrm{a}\:\mathrm{bound}\:\mathrm{to}\:\mathrm{which}\:\mathrm{this}\:\mathrm{series}\:\mathrm{falls} \\ $$$$:\:{n}\left(\mathrm{1}\:+\:\frac{\mathrm{1}}{\mathrm{4}\left({n}−\mathrm{1}\right)}\right)\:<\:{S}\:<\:{n}^{{n}} \left(\mathrm{1}\:+\:\frac{\mathrm{2}}{{e}\left({n}−\mathrm{1}\right)}\right) \\ $$$$\mathrm{please}\:\mathrm{do}\:\mathrm{well}\:\mathrm{to}\:\mathrm{search}\:\mathrm{for}\:\mathrm{the}\:\mathrm{programming}\:\mathrm{codes}\:\mathrm{for}\:\mathrm{this}\:\mathrm{series}. \\ $$
Commented by Power last updated on 09/Jun/20
thanks sir
$$\mathrm{thanks}\:\mathrm{sir} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *