Menu Close

Question-97775




Question Number 97775 by liki last updated on 09/Jun/20
Commented by liki last updated on 09/Jun/20
..i need help
..ineedhelp
Commented by Tony Lin last updated on 09/Jun/20
∫(x^2 /(x^2 +bx+12))dx  =∫ ((x^2 +bx+12)/(x^2 +bx+12))−(b/2)∫((2x+b)/(x^2 +bx+12))dx  −(b/2)∫((((24)/b)−b)/((x+(b/2))^2 +((√(12−(b^2 /4))))^2 ))dx  =x−(b/2)ln∣x^2 +bx+12∣+((b^2 −24)/( (√(48−b^2 )))) tan^(−1) ((2x+b)/( (√(48−b^2 ))))+c
x2x2+bx+12dx=x2+bx+12x2+bx+12b22x+bx2+bx+12dxb224bb(x+b2)2+(12b24)2dx=xb2lnx2+bx+12+b22448b2tan12x+b48b2+c
Answered by Ar Brandon last updated on 09/Jun/20
I=∫(x^2 /(x^2 +bx+12))dx=∫{1−((bx+12)/(x^2 +bx+12))}     =∫{1−(b/2)∙((2x+b)/(x^2 +bx+12))+(((b^2 /2)−12)/(x^2 +bx+12))}dx     =∫{1−(b/2)∙((2x+b)/(x^2 +bx+12))+2∙((b^2 −24)/((2x+b)^2 +(48−b^2 )))}dx     =x−(b/2)∙ln∣x^2 +bx+12∣+((b^2 −24)/( (√(48−b^2 ))))tan^(−1) [((2x+b)/( (√(48−b^2 ))))]+C
I=x2x2+bx+12dx={1bx+12x2+bx+12}={1b22x+bx2+bx+12+b2212x2+bx+12}dx={1b22x+bx2+bx+12+2b224(2x+b)2+(48b2)}dx=xb2lnx2+bx+12+b22448b2tan1[2x+b48b2]+C
Answered by abdomathmax last updated on 09/Jun/20
I =∫  (x^2 /(x^2  +bx +12))dx ⇒I =∫((x^2 +bx+12−bx−12)/(x^2  +bx +12))dx  =x−∫  ((bx +12)/(x^2 +bx +12))dx  x^2  +bx +12 =0→Δ =b^2 −48  case 1 b^2 −48>0 ⇒x_1 =((−b+(√(b^2 −48)))/2)  x_2 =((−b−(√(b^2 −48)))/2)  f(x)=((bx +12)/(x^2  +bx +12)) =((bx+12)/((x−x_1 )(x−x_2 ))) =(a/(x−x_1 )) +(b/(x−x_2 ))  a =((bx_1 +12)/( (√(b^2 −48)))) and b =−((bx_(2 ) +12)/( (√(b^2 −48))))  ∫f(x)dx =aln∣x−x_1 ∣+bln∣x−x_2 ∣ +c ⇒  I =x−aln∣x−x_1 ∣−bln∣x−x_2 ∣ +C  case 2  b^2 −48<0 ⇒((bx+12)/(x^2  +bx +12))  =((bx+12)/(x^2  +2x(b/2) +(b^2 /4)+12−(b^2 /4))) =((bx+12)/((x+(b/2))^2  +((48−b^2 )/4)))  we do the changement x+(b/2) =((√(48−b^2 ))/2)u ⇒  ∫  ((bx+12)/(x^2  +bx+12))dx =(4/( (√(48−b^2 ))))∫  ((b(((√(48−b^2 ))/2)u−(b/2))+12)/(1+u^2 ))×((√(48−b^2 ))/2)du  =2 ∫  (((√(48−b^2 ))u−(b^2 /2)+12)/(1+u^2 ))du  =(√(48−b^2 ))ln(1+u^2 ) +(24−b^2 ) arctan(u) +C  =(√(48−b^2 ))ln(1+(((2x+b)/( (√(48−b^2 )))))^2 )  +(24−b^2 ) arctan(((2x+b)/( (√(48−b^2 ))))) +C ⇒  I =x−(√(48−b^2 ))ln(1+(((2x+b)^2 )/(48−b^2 )))  −(24−b^2 )arctan(((2x+b)/( (√(48−b^2 ))))) +C
I=x2x2+bx+12dxI=x2+bx+12bx12x2+bx+12dx=xbx+12x2+bx+12dxx2+bx+12=0Δ=b248case1b248>0x1=b+b2482x2=bb2482f(x)=bx+12x2+bx+12=bx+12(xx1)(xx2)=axx1+bxx2a=bx1+12b248andb=bx2+12b248f(x)dx=alnxx1+blnxx2+cI=xalnxx1blnxx2+Ccase2b248<0bx+12x2+bx+12=bx+12x2+2xb2+b24+12b24=bx+12(x+b2)2+48b24wedothechangementx+b2=48b22ubx+12x2+bx+12dx=448b2b(48b22ub2)+121+u2×48b22du=248b2ub22+121+u2du=48b2ln(1+u2)+(24b2)arctan(u)+C=48b2ln(1+(2x+b48b2)2)+(24b2)arctan(2x+b48b2)+CI=x48b2ln(1+(2x+b)248b2)(24b2)arctan(2x+b48b2)+C
Answered by niroj last updated on 09/Jun/20
 ∫ (( x^2 )/(x^2 +bx +12))dx   = ∫ (( x^2 +bx+12−bx−12)/(x^2 +bx+12))dx   = ∫ ((x^2 +bx+12)/(x^2 +bx+12))dx−∫ ((bx+12)/(x^2 +bx+12))dx   = ∫dx  −∫ (( (b/2)(2x+b)+12−(b^2 /2))/(x^2 +bx+12))dx   = ∫dx−(b/2)∫ (((2x+b))/(x^2 +bx+12))dx −(12−(b^2 /2))∫ (1/(x^2 +bx+12))dx  = ∫dx −(b/2)∫ (((2x+b))/(x^2 +bx+12))dx−(12−(b^2 /2))∫ (( 1)/((x)^2 +2x.(b/2)+(b^2 /4)−(b^2 /4)+12))dx   = ∫dx − (b/2) ∫  (((2x+b)dx)/(x^2 +bx+12)) −(12−(b^2 /2))∫ (1/((x+(b/2))^2 −(((b^2 −48)/4))))dx   = ∫dx −(b/2)∫ (((2x+b)dx)/(x^2 +bx+12))  −(12−(b^2 /2))∫ (1/((x+(b/2))^2 −(((√(b^2 −48))/2))^2 ))dx     = x −(b/2)log (x^2 +bx+12) −(12−(b^2 /2)).(1/(2.((√(b^2 −48))/2)))log ((x+(b/2) − ((√(b^2 −48))/2))/(x+(b/2)+((√(b^2 −48))/2))) +C    = x −(b/2)log (x^2 +bx+12)−(12−(b^2 /2))(1/( (√(b^2 −48)))) log  ((2x−b−(√(b^2 −48)))/(2x+b+(√(b^2 −48)))) +C //.
x2x2+bx+12dx=x2+bx+12bx12x2+bx+12dx=x2+bx+12x2+bx+12dxbx+12x2+bx+12dx=dxb2(2x+b)+12b22x2+bx+12dx=dxb2(2x+b)x2+bx+12dx(12b22)1x2+bx+12dx=dxb2(2x+b)x2+bx+12dx(12b22)1(x)2+2x.b2+b24b24+12dx=dxb2(2x+b)dxx2+bx+12(12b22)1(x+b2)2(b2484)dx=dxb2(2x+b)dxx2+bx+12(12b22)1(x+b2)2(b2482)2dx=xb2log(x2+bx+12)(12b22).12.b2482logx+b2b2482x+b2+b2482+C=xb2log(x2+bx+12)(12b22)1b248log2xbb2482x+b+b248+C//.

Leave a Reply

Your email address will not be published. Required fields are marked *