Menu Close

Question-97866




Question Number 97866 by me2love2math last updated on 10/Jun/20
Commented by me2love2math last updated on 10/Jun/20
1 2 5 and 6
125and6
Commented by bobhans last updated on 10/Jun/20
(2i)2xy (dy/dx) + y^2  = e^(2x)   2xy dy + (y^2 −e^(2x) ) dx = 0  exact if (∂N/∂x) = (∂M/∂y)   { (((∂N/∂x) = 2y)),(((∂M/∂y) = 2y)) :} so it is diff equation exact  F(x,y) = ∫ M(x,y) dx + g(y)  where g′(y)=2xy−(∂/∂y) (∫ (y^2 −e^(2x)  )dx)  g′(y) = 2xy −2yx = 0 ⇒g(y) = k  F(x,y) = ∫ (y^2 −e^(2x) ) dx + k  F(x,y) = xy^2 −(1/2)e^(2x) + k   solution is xy^2 −(1/2)e^(2x) +k = C  or xy^2 −(1/2)e^(2x)  = C_1
(2i)2xydydx+y2=e2x2xydy+(y2e2x)dx=0exactifNx=My{Nx=2yMy=2ysoitisdiffequationexactF(x,y)=M(x,y)dx+g(y)whereg(y)=2xyy((y2e2x)dx)g(y)=2xy2yx=0g(y)=kF(x,y)=(y2e2x)dx+kF(x,y)=xy212e2x+ksolutionisxy212e2x+k=Corxy212e2x=C1
Commented by bemath last updated on 10/Jun/20
(1ii) m^2 +7m+49=0  m = −7,−7  y_h  = Ae^(−7x)  + Bx e^(−7x)   particular solution  y_p  = Ce^(5x)  ⇔ { ((y′= 5Ce^(5x) )),((y′′=25Ce^(5x) )) :}  ⇔25Ce^(5x)  + 7(5Ce^(5x) )+49(Ce^(5x) )=4e^(5x)   ⇔(25+35+49)C = 4  C = (4/(109))  ∴ generall solution  y_g  = Ae^(−7x) +Bx e^(−7x) + (4/(109)) e^(5x)
(1ii)m2+7m+49=0m=7,7yh=Ae7x+Bxe7xparticularsolutionyp=Ce5x{y=5Ce5xy=25Ce5x25Ce5x+7(5Ce5x)+49(Ce5x)=4e5x(25+35+49)C=4C=4109generallsolutionyg=Ae7x+Bxe7x+4109e5x
Commented by me2love2math last updated on 10/Jun/20
Thanks all. well appreciated....remain 5
Thanksall.wellappreciated.remain5
Answered by john santu last updated on 10/Jun/20
(1) homogenous solution  λ^2 −5λ+6 = 0  λ = 2,3 ⇒y_h  = C_1 e^(2x)  + C_2 e^(3x)   particular solution  y_p  = a sin 4x + b cos 4x  y′=4a cos 4x− 4b sin 4x  y′′=−16a sin 4x −16b cos 4x  ⇔ { ((22a+20b=2)),((−20a−10b=0)) :}  we get b = −2a ∧a=−(1/9)  generall solution  y_g  = C_1 e^(2x)  + C_2 e^(3x) −(1/9)sin 4x +(2/9)cos 4x
(1)homogenoussolutionλ25λ+6=0λ=2,3yh=C1e2x+C2e3xparticularsolutionyp=asin4x+bcos4xy=4acos4x4bsin4xy=16asin4x16bcos4x{22a+20b=220a10b=0wegetb=2aa=19generallsolutionyg=C1e2x+C2e3x19sin4x+29cos4x
Answered by smridha last updated on 10/Jun/20
(6)s^2 x(s)−sx(0)−x^′ (0)−4x(s)=((2s)/(s^2 +4))     x(s)[s^2 −4]−3s−4=((2s)/(s^2 +4))  x(s)=((2s)/((s^2 −4)(s^2 +4))) +(4/(s^2 −2^2 ))+((3s)/(s^2 −2^2 ))  x(s)=(s/4)[(1/((s^2 −2^2 )))−(1/((s^2 +2^2 )))]+2[(2/(s^2 −2^2 ))]                              +3[(s/(s^2 −2^2 ))]  now take L^(−1)  both sides we get  x(t)=(1/4)cosh(2t)−(1/4)cos2t+2sinh(2t)                3cosh(2t)  so the solution:  x(t)=((13)/4)cosh(2t)−(1/4)cos(2t)+2sinh(2t)
(6)s2x(s)sx(0)x(0)4x(s)=2ss2+4x(s)[s24]3s4=2ss2+4x(s)=2s(s24)(s2+4)+4s222+3ss222x(s)=s4[1(s222)1(s2+22)]+2[2s222]+3[ss222]nowtakeL1bothsideswegetx(t)=14cosh(2t)14cos2t+2sinh(2t)3cosh(2t)sothesolution:x(t)=134cosh(2t)14cos(2t)+2sinh(2t)
Commented by smridha last updated on 10/Jun/20
or ans should be like that  x(t)=((13)/8)[e^(2t) +e^(−2t) ]+[e^(2t) −e^(−2t) ]−(1/4)cos(2t)  =((21)/8)e^(2t) +(5/8)e^(−2t) −(1/4)cos(2t)
oransshouldbelikethatx(t)=138[e2t+e2t]+[e2te2t]14cos(2t)=218e2t+58e2t14cos(2t)
Answered by mathmax by abdo last updated on 10/Jun/20
y^(′′)  −5y^′  +6 =2sin(4x)  (he)→y^(′′) −5y^′  +6 =0→r^2 −5r +6 =0  Δ =25−24 =1 ⇒r_1 =((5+1)/2) =3 and r_2 =((5−1)/2) =2 ⇒y_h =αe^(3x)  +βe^(2x)   =α u_1  +β u_2   W(u_1  ,u_2 ) = determinant (((u_1           u_2 )),((u_1 ^′           u_2 ^′ )))= determinant (((e^(3x)           e^(2x) )),((3e^(3x)        2e^(2x)  )))=−e^(5x)   W_1 = determinant (((0                               e^(2x) )),((2sin(4x)           2e^(2x) )))=−2e^(2x)  sin(4x)  W_2 = determinant (((e^(3x)           0)),((3e^(3x)       2sin(4x))))=2e^(3x)  sin(4x)  v_1 =∫ (w_1 /w)dx =∫   ((−2e^(2x)  sin(4x))/(−e^(5x) )) =2∫ e^(−3x)  sin(4x)dx  =2Im( ∫ e^(−3x+4ix) dx) we have ∫ e^((−3+4i)x)  dx =(1/(−3+4i)) e^((−3+4i)x)   =−(1/(3−4i))e^(−3x) (cos(4x)+isin(4x)) =−((3+4i)/(25))e^(−3x) (cos(4x)+isin(4x))  =−(1/(25))e^(−3x) (3cos(4x)+3isin(4x)+4icos(4x)−4sin(4x)) ⇒  v_1 =−(2/(25))e^(−3x) (3sin(4x)+4cos(4x))  v_2 =∫ (w_2 /w)dx =∫  ((2e^(3x)  sin(4x))/(−e^(5x) ))dx =−2 ∫  e^(−2x)  sin(4x)dx  =−2 Im( ∫ e^((−2+4i)x) dx) and ∫ e^((−2+4i)x) dx=(1/(−2+4i)) e^((−2+4i)x)    =−(1/(2−4i))e^(−2x) (cos(4x)+isin(4x)) =−((2+4i)/(20)) e^(−2x)  {cos(4x)+isin(4x)}  =−(e^(−2x) /(20)){ 2cos(4x)+2isin(4x)+4icos(4x)−4sin(4x)} ⇒  v_2 =(e^(−2x) /(10))( 2sin(4x)+4cos(4x)} =(e^(−2x) /5)(sin(4x)+2cos(4x)) so   y_p =u_1 v_(1 ) +u_2 v_2 =−(2/(25)){3sin(4x)+4cos(4x)} +(1/5)(sin(4x)+2cos(4x))  =(−(6/(25)) +(1/5))sin(4x) +(−(8/(25)) +(2/5))cos(4x)  =−(1/(25))sin(4x) +(2/(25)) cos(4x)  the general solution is  y =y_h  +y_p
y5y+6=2sin(4x)(he)y5y+6=0r25r+6=0Δ=2524=1r1=5+12=3andr2=512=2yh=αe3x+βe2x=αu1+βu2W(u1,u2)=|u1u2u1u2|=|e3xe2x3e3x2e2x|=e5xW1=|0e2x2sin(4x)2e2x|=2e2xsin(4x)W2=|e3x03e3x2sin(4x)|=2e3xsin(4x)v1=w1wdx=2e2xsin(4x)e5x=2e3xsin(4x)dx=2Im(e3x+4ixdx)wehavee(3+4i)xdx=13+4ie(3+4i)x=134ie3x(cos(4x)+isin(4x))=3+4i25e3x(cos(4x)+isin(4x))=125e3x(3cos(4x)+3isin(4x)+4icos(4x)4sin(4x))v1=225e3x(3sin(4x)+4cos(4x))v2=w2wdx=2e3xsin(4x)e5xdx=2e2xsin(4x)dx=2Im(e(2+4i)xdx)ande(2+4i)xdx=12+4ie(2+4i)x=124ie2x(cos(4x)+isin(4x))=2+4i20e2x{cos(4x)+isin(4x)}=e2x20{2cos(4x)+2isin(4x)+4icos(4x)4sin(4x)}v2=e2x10(2sin(4x)+4cos(4x)}=e2x5(sin(4x)+2cos(4x))soyp=u1v1+u2v2=225{3sin(4x)+4cos(4x)}+15(sin(4x)+2cos(4x))=(625+15)sin(4x)+(825+25)cos(4x)=125sin(4x)+225cos(4x)thegeneralsolutionisy=yh+yp
Answered by mathmax by abdo last updated on 10/Jun/20
4) let solve by laplace transform  y^(′′)  +3y^′  +2y =sin(2x) ⇒L(y^(′′) )+3L(y^′ )+2L(y) =L(sin(2x)) ⇒  x^2  L(y)−xy(0)−y^′ (o) +3(xL(y)−y(0))+2L(y) =L(sin(2x)) ⇒  (x^2 +3x+2)L(y) −(x+3)y(o)−y^′ (0) =L(sin(2x))  L(sin(2x) =∫_0 ^∞  sin(2t)e^(−xt)  dt =Im(∫_0 ^∞  e^(2it−xt)  dt)  ∫_0 ^∞  e^((−x+2i)t)  dt =[(1/(−x+2i)) e^((−x+2i)t) ]_(t=0) ^∞  =((−1)/(−x+2i)) =(1/(x−2i)) =((x+2i)/(x^2  +4)) ⇒  L(sin(2x))=(2/(x^2  +4))  (e)⇒(x^2  +3x+2)L(y) =y(o)(x+3)+y^′ (0)+(2/(x^2  +4)) ⇒  L(y) =((x+3)/(x^2  +3x+2))y(0) +((y^′ (0))/(x^2  +3x+2)) +(2/((x^2  +3x+2)(x^2  +4))) ⇒  y(x) =y(0)L^(−1) (((x+3)/(x^2  +3x+2)))+y^′ (0)L^(−1) ((1/(x^2  +3x+2)))+2L^(−1) ((1/((x^2  +3x+2)(x^2 +4))))  f(x) =((x+3)/(x^2 +3x+2))=((x+3)/((x+1)(x+2))) =(x+3)((1/(x+1))−(1/(x+2)))  =((x+3)/(x+1))−((x+3)/(x+2)) =1+(2/(x+1))−(1+(1/(x+2))) =(2/(x+1))−(1/(x+2)) ⇒  L^(−1) (f) =2e^(−x) −e^(−2x)   g(x) =(1/(x^2 +3x+2)) =(1/(x+1))−(1/(x+2)) ⇒L^(−1) (g) =e^(−x) −e^(−2x)   h(x) =(1/((x^2  +3x+2)(x^2  +4))) =(1/((x+1)(x+2)(x−2i)(x+2i)))  =(a/(x+1)) +(b/(x+2)) +(c/(x−2i)) +(d/(x+2i))  a =(1/((−1−2i)(−1+2i))) =(1/((1+2i)(1−2i))) =(1/5)  b =((−1)/((−2−2i)(−2+2i))) =(1/((2+2i)(2−2i))) =(1/(4×2))=(1/8)  c =(1/((2i+1)(2i+2)4i)) =(1/(4i(−4+4i+2i+2))) =(1/(4i(−2+6i))) =(1/(−8i−24)) =((−1)/(8i+24))  d =(1/((−2i+1)(−2i+2)(−4i))) =....  L^(−1) (h) =a e^(−x)  +b^(−2x)  +c e^(2ix)  +d e^(−2ix)  →at form a e^(−x)   +be^(−2x)  +αcos(2x)  +βsin(2x)  so the general solution is  y(x) =ae^(−x)  +b e^(−2x)  +αcos(2x) +βsin(2x)
4)letsolvebylaplacetransformy+3y+2y=sin(2x)L(y)+3L(y)+2L(y)=L(sin(2x))x2L(y)xy(0)y(o)+3(xL(y)y(0))+2L(y)=L(sin(2x))(x2+3x+2)L(y)(x+3)y(o)y(0)=L(sin(2x))L(sin(2x)=0sin(2t)extdt=Im(0e2itxtdt)0e(x+2i)tdt=[1x+2ie(x+2i)t]t=0=1x+2i=1x2i=x+2ix2+4L(sin(2x))=2x2+4(e)(x2+3x+2)L(y)=y(o)(x+3)+y(0)+2x2+4L(y)=x+3x2+3x+2y(0)+y(0)x2+3x+2+2(x2+3x+2)(x2+4)y(x)=y(0)L1(x+3x2+3x+2)+y(0)L1(1x2+3x+2)+2L1(1(x2+3x+2)(x2+4))f(x)=x+3x2+3x+2=x+3(x+1)(x+2)=(x+3)(1x+11x+2)=x+3x+1x+3x+2=1+2x+1(1+1x+2)=2x+11x+2L1(f)=2exe2xg(x)=1x2+3x+2=1x+11x+2L1(g)=exe2xh(x)=1(x2+3x+2)(x2+4)=1(x+1)(x+2)(x2i)(x+2i)=ax+1+bx+2+cx2i+dx+2ia=1(12i)(1+2i)=1(1+2i)(12i)=15b=1(22i)(2+2i)=1(2+2i)(22i)=14×2=18c=1(2i+1)(2i+2)4i=14i(4+4i+2i+2)=14i(2+6i)=18i24=18i+24d=1(2i+1)(2i+2)(4i)=.L1(h)=aex+b2x+ce2ix+de2ixatformaex+be2x+αcos(2x)+βsin(2x)sothegeneralsolutionisy(x)=aex+be2x+αcos(2x)+βsin(2x)
Answered by mathmax by abdo last updated on 10/Jun/20
 { ((x^′  =x−2y  ⇒          ((x^′ ),(y^′ ) )=A  ((x),(y) ))),((y^′ =−2x +y)) :}   with  A = (((1        −2)),((−2         1)) )  let X = ((x),(h) )    e ⇒X^′  =A X ⇒  X (t)=k e^(A(t−t_0 ))  let find   e^(tA)   p_c (A) =det(A−xI) = determinant (((1−x       −2)),((−2        1−x)))=(1−x)^2 −4 =(1−x−2)(1−x+2)  =(−x−1)(3−x) =(x+1)(x−3)  so the values are λ_1 =−1 and λ_2 =3  x^n  =p_c (x)q +u_n x +v_n  ⇒(−1)^n  =−u_n +v_n  and 3^n  =3u_n  +v_n  ⇒  4u_n =3^n −(−1)^n  ⇒ u_n =(((3)^n −(−1)^n )/4)  v_n =u_n  +(−1)^n  =((3^n −(−1)^n )/4) +(−1)^n  =((3^n −(−1)^n  +4(−1)^n )/4) =((3^n  +3(−1)^n )/4)  A^n  =u_n  A +v_n I=((3^n −(−1)^n )/4) (((1          −2)),((−2          1)) )  +((3^n  +3(−1)^n )/4) (((1         0)),((0          1)) )  =(1/4) (((3^n −(−1)^n     −2(3^n −(−1)^n ))),((−2(3^n −(−1)^n        3^n −(−1)^n )) ) +(1/4) (((3^n  +3(−1)^n         0   )),((0                 3^n  +3(−1)^n                   )) )  =(1/4) (((2.3^n  +2(−1)^n                  −2.3^n  +2(−1)^n )),((−2.3^n  +2(−1)^n                    2.3^n  +2(−1)^n )) )  e^(tA )  =Σ_(n=0) ^∞  (t^n /(n!)) A^n   =(1/4)Σ_(n=0) ^∞  (t^n /(n!))  (((2.3^n  +2(−1)^n             −2.3^n  +2(−1)^n )),((−2.3^n  +2(−1)^n            2.3^n  +2(−1)^n )) )  =(1/2) Σ_(n=0) ^∞  (t^n /(n!))  (((3^n  +(−1)^n            −3^n  +(−1)^n )),((−3^n  +(−1)^n             3^n  +(−1)^n )) )  =(1/2) ((( Σ_(n=0) ^∞  (((3t)^n )/(n!)) +Σ_(n=0) ^∞  (((−t)^n )/(n!))                    −Σ_(n=0) ^∞  (((3t)^n )/(n!))+Σ_(n=0) ^∞  (((−t)^n )/(n!)))),((......                                                                            ....)) )  =(1/2) (((e^(3t)  +e^(−t)              −e^(3t)  +e^(−t)      )),((−e^(3t)   +e^(−t)       e^(3t)  +e^(−t) )) )  X(t) =k e^(A(t−t_0 ))
{x=x2y(xy)=A(xy)y=2x+ywithA=(1221)letX=(xh)eX=AXX(t)=keA(tt0)letfindetApc(A)=det(AxI)=|1x221x|=(1x)24=(1x2)(1x+2)=(x1)(3x)=(x+1)(x3)sothevaluesareλ1=1andλ2=3xn=pc(x)q+unx+vn(1)n=un+vnand3n=3un+vn4un=3n(1)nun=(3)n(1)n4vn=un+(1)n=3n(1)n4+(1)n=3n(1)n+4(1)n4=3n+3(1)n4An=unA+vnI=3n(1)n4(1221)+3n+3(1)n4(1001)=14(3n(1)n2(3n(1)n)2(3n(1)n3n(1)n)+14(3n+3(1)n003n+3(1)n)=14(2.3n+2(1)n2.3n+2(1)n2.3n+2(1)n2.3n+2(1)n)etA=n=0tnn!An=14n=0tnn!(2.3n+2(1)n2.3n+2(1)n2.3n+2(1)n2.3n+2(1)n)=12n=0tnn!(3n+(1)n3n+(1)n3n+(1)n3n+(1)n)=12(n=0(3t)nn!+n=0(t)nn!n=0(3t)nn!+n=0(t)nn!.)=12(e3t+ete3t+ete3t+ete3t+et)X(t)=keA(tt0)

Leave a Reply

Your email address will not be published. Required fields are marked *