Menu Close

Question-97953




Question Number 97953 by I want to learn more last updated on 10/Jun/20
Commented by mr W last updated on 10/Jun/20
M=T×h=2×2=4 KN  ΔV=(M/l)=(4/4)=1 KN  ΔV_A =+ΔV=+1 KN (increasing)  ΔV_B =ΔV_C =−((ΔV)/2)=−0.5 KN (decreasing)
$${M}={T}×{h}=\mathrm{2}×\mathrm{2}=\mathrm{4}\:{KN} \\ $$$$\Delta{V}=\frac{{M}}{{l}}=\frac{\mathrm{4}}{\mathrm{4}}=\mathrm{1}\:{KN} \\ $$$$\Delta{V}_{{A}} =+\Delta{V}=+\mathrm{1}\:{KN}\:\left({increasing}\right) \\ $$$$\Delta{V}_{{B}} =\Delta{V}_{{C}} =−\frac{\Delta{V}}{\mathrm{2}}=−\mathrm{0}.\mathrm{5}\:{KN}\:\left({decreasing}\right) \\ $$
Commented by mr W last updated on 10/Jun/20
Commented by I want to learn more last updated on 10/Jun/20
Thanks sir, i appreciate
$$\mathrm{Thanks}\:\mathrm{sir},\:\mathrm{i}\:\mathrm{appreciate} \\ $$
Answered by Rio Michael last updated on 10/Jun/20
Here′s another method i love. Keep in mind  it is thesame as Mr W method.   if we equate the sum of the moments about the x−axis   we can the determine ΔN_A  the additional reaction force  ⇒ ΣM_x  = 0 ⇔ 4ΔN_A  −2.0 × 2.0kN = 0    ΔN_A  = 1.0 kN  if we equate the sum of the moments about the x−axis parrallel  to the y−axis which goes through point B  to zero. we get  the addition reaction force ΔN_C    ⇒Σ M_y ^B  = 0 ⇔ 4.8ΔN_C  + 2.4N_A  = 0     N_C  = −0.5 kN  if we equate the sum in the z−direction to zero , we can determine  the additional ΔN_B  force   ⇒ ΣF_z  = 0 ⇔ ΔN_A  + ΔN_B  + ΔN_C  = 0   N_B  = −0.5 kN.
$$\mathrm{Here}'\mathrm{s}\:\mathrm{another}\:\mathrm{method}\:\mathrm{i}\:\mathrm{love}.\:\mathrm{Keep}\:\mathrm{in}\:\mathrm{mind} \\ $$$$\mathrm{it}\:\mathrm{is}\:\mathrm{thesame}\:\mathrm{as}\:\mathrm{Mr}\:\mathrm{W}\:\mathrm{method}.\: \\ $$$$\mathrm{if}\:\mathrm{we}\:\mathrm{equate}\:\mathrm{the}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{the}\:\mathrm{moments}\:\mathrm{about}\:\mathrm{the}\:\mathrm{x}−\mathrm{axis}\: \\ $$$$\mathrm{we}\:\mathrm{can}\:\mathrm{the}\:\mathrm{determine}\:\Delta{N}_{\mathrm{A}} \:\mathrm{the}\:\mathrm{additional}\:\mathrm{reaction}\:\mathrm{force} \\ $$$$\Rightarrow\:\Sigma{M}_{{x}} \:=\:\mathrm{0}\:\Leftrightarrow\:\mathrm{4}\Delta{N}_{{A}} \:−\mathrm{2}.\mathrm{0}\:×\:\mathrm{2}.\mathrm{0}{kN}\:=\:\mathrm{0}\: \\ $$$$\:\Delta{N}_{{A}} \:=\:\mathrm{1}.\mathrm{0}\:{kN} \\ $$$$\mathrm{if}\:\mathrm{we}\:\mathrm{equate}\:\mathrm{the}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{the}\:\mathrm{moments}\:\mathrm{about}\:\mathrm{the}\:\mathrm{x}−\mathrm{axis}\:\mathrm{parrallel} \\ $$$$\mathrm{to}\:\mathrm{the}\:\mathrm{y}−\mathrm{axis}\:\mathrm{which}\:\mathrm{goes}\:\mathrm{through}\:\mathrm{point}\:{B}\:\:\mathrm{to}\:\mathrm{zero}.\:\mathrm{we}\:\mathrm{get} \\ $$$$\mathrm{the}\:\mathrm{addition}\:\mathrm{reaction}\:\mathrm{force}\:\Delta{N}_{{C}} \\ $$$$\:\Rightarrow\Sigma\:{M}_{{y}} ^{{B}} \:=\:\mathrm{0}\:\Leftrightarrow\:\mathrm{4}.\mathrm{8}\Delta{N}_{{C}} \:+\:\mathrm{2}.\mathrm{4}{N}_{{A}} \:=\:\mathrm{0} \\ $$$$\:\:\:{N}_{{C}} \:=\:−\mathrm{0}.\mathrm{5}\:{kN} \\ $$$$\mathrm{if}\:\mathrm{we}\:\mathrm{equate}\:\mathrm{the}\:\mathrm{sum}\:\mathrm{in}\:\mathrm{the}\:\mathrm{z}−\mathrm{direction}\:\mathrm{to}\:\mathrm{zero}\:,\:\mathrm{we}\:\mathrm{can}\:\mathrm{determine} \\ $$$$\mathrm{the}\:\mathrm{additional}\:\Delta{N}_{{B}} \:\mathrm{force} \\ $$$$\:\Rightarrow\:\Sigma{F}_{{z}} \:=\:\mathrm{0}\:\Leftrightarrow\:\Delta{N}_{{A}} \:+\:\Delta{N}_{{B}} \:+\:\Delta{N}_{{C}} \:=\:\mathrm{0}\: \\ $$$${N}_{{B}} \:=\:−\mathrm{0}.\mathrm{5}\:{kN}. \\ $$
Commented by Rio Michael last updated on 10/Jun/20
Commented by mr W last updated on 11/Jun/20
ΔF_B =0  ΔF_C =2 KN
$$\Delta{F}_{{B}} =\mathrm{0} \\ $$$$\Delta{F}_{{C}} =\mathrm{2}\:{KN} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *