Menu Close

Question-98087




Question Number 98087 by Algoritm last updated on 11/Jun/20
Answered by mr W last updated on 11/Jun/20
a_k =(1/((k+2)^2 +k))=(1/((k+1)(k+4)))=(1/3)((1/(k+1))−(1/(k+4)))  Σ_(k=1) ^n a_k =(1/3)(Σ_(k=1) ^n (1/(k+1))−Σ_(k=1) ^n (1/(k+4)))  =(1/3)(Σ_(k=2) ^(n+1) (1/k)−Σ_(k=5) ^(n+4) (1/k))  =(1/3)((1/2)+(1/3)+(1/4)−(1/(n+2))−(1/(n+3))−(1/(n+4))+Σ_(k=5) ^(n+4) (1/k)−Σ_(k=5) ^(n+4) (1/k))  =(1/3)((1/2)+(1/3)+(1/4)−(1/(n+2))−(1/(n+3))−(1/(n+4)))  lim_(n→∞) Σ_(k=1) ^n a_k =(1/3)((1/2)+(1/3)+(1/4))=((13)/(36))
$${a}_{{k}} =\frac{\mathrm{1}}{\left({k}+\mathrm{2}\right)^{\mathrm{2}} +{k}}=\frac{\mathrm{1}}{\left({k}+\mathrm{1}\right)\left({k}+\mathrm{4}\right)}=\frac{\mathrm{1}}{\mathrm{3}}\left(\frac{\mathrm{1}}{{k}+\mathrm{1}}−\frac{\mathrm{1}}{{k}+\mathrm{4}}\right) \\ $$$$\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}{a}_{{k}} =\frac{\mathrm{1}}{\mathrm{3}}\left(\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\frac{\mathrm{1}}{{k}+\mathrm{1}}−\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\frac{\mathrm{1}}{{k}+\mathrm{4}}\right) \\ $$$$=\frac{\mathrm{1}}{\mathrm{3}}\left(\underset{{k}=\mathrm{2}} {\overset{{n}+\mathrm{1}} {\sum}}\frac{\mathrm{1}}{{k}}−\underset{{k}=\mathrm{5}} {\overset{{n}+\mathrm{4}} {\sum}}\frac{\mathrm{1}}{{k}}\right) \\ $$$$=\frac{\mathrm{1}}{\mathrm{3}}\left(\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{3}}+\frac{\mathrm{1}}{\mathrm{4}}−\frac{\mathrm{1}}{{n}+\mathrm{2}}−\frac{\mathrm{1}}{{n}+\mathrm{3}}−\frac{\mathrm{1}}{{n}+\mathrm{4}}+\underset{{k}=\mathrm{5}} {\overset{{n}+\mathrm{4}} {\sum}}\frac{\mathrm{1}}{{k}}−\underset{{k}=\mathrm{5}} {\overset{{n}+\mathrm{4}} {\sum}}\frac{\mathrm{1}}{{k}}\right) \\ $$$$=\frac{\mathrm{1}}{\mathrm{3}}\left(\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{3}}+\frac{\mathrm{1}}{\mathrm{4}}−\frac{\mathrm{1}}{{n}+\mathrm{2}}−\frac{\mathrm{1}}{{n}+\mathrm{3}}−\frac{\mathrm{1}}{{n}+\mathrm{4}}\right) \\ $$$$\underset{{n}\rightarrow\infty} {\mathrm{lim}}\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}{a}_{{k}} =\frac{\mathrm{1}}{\mathrm{3}}\left(\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{3}}+\frac{\mathrm{1}}{\mathrm{4}}\right)=\frac{\mathrm{13}}{\mathrm{36}} \\ $$
Commented by Algoritm last updated on 11/Jun/20
thank you sir
$$\mathrm{thank}\:\mathrm{you}\:\mathrm{sir} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *