Question Number 98096 by Algoritm last updated on 11/Jun/20
Answered by mathmax by abdo last updated on 11/Jun/20
$$\mathrm{S}\:=\sum_{\mathrm{n}=\mathrm{1}} ^{\infty} \:\frac{\mathrm{3n}−\mathrm{1}}{\mathrm{2}^{\mathrm{n}−\mathrm{1}} }\:=_{\mathrm{n}−\mathrm{1}=\mathrm{p}} \:\:\sum_{\mathrm{p}=\mathrm{0}} ^{\infty} \:\frac{\mathrm{3p}+\mathrm{2}}{\mathrm{2}^{\mathrm{p}} } \\ $$$$\mathrm{so}\:\mathrm{S}\:=\mathrm{3}\sum_{\mathrm{n}=\mathrm{0}} ^{\infty} \:\frac{\mathrm{n}}{\mathrm{2}^{\mathrm{n}} }\:+\mathrm{2}\:\sum_{\mathrm{n}=\mathrm{0}} ^{\infty} \:\frac{\mathrm{1}}{\mathrm{2}^{\mathrm{n}} }\:\:\:\mathrm{we}\:\mathrm{have}\:\sum_{\mathrm{n}=\mathrm{0}} ^{\infty} \:\frac{\mathrm{1}}{\mathrm{2}^{\mathrm{n}} }\:=\frac{\mathrm{1}}{\mathrm{1}−\frac{\mathrm{1}}{\mathrm{2}}}\:=\mathrm{2} \\ $$$$\mathrm{let}\:\mathrm{f}\left(\mathrm{x}\right)\:=\sum_{\mathrm{n}=\mathrm{0}} ^{\infty} \:\mathrm{nx}^{\mathrm{n}} \:\:\:\:\:\:\mathrm{with}\:\mid\mathrm{x}\mid<\mathrm{1}\:\mathrm{we}\:\mathrm{have}\:\sum_{\mathrm{n}=\mathrm{0}} ^{\infty} \:\mathrm{x}^{\mathrm{n}} \:=\frac{\mathrm{1}}{\mathrm{1}−\mathrm{x}}\:\Rightarrow \\ $$$$\sum_{\mathrm{n}=\mathrm{1}} ^{\infty} \:\mathrm{nx}^{\mathrm{n}−\mathrm{1}} \:=\frac{\mathrm{1}}{\left(\mathrm{1}−\mathrm{x}\right)^{\mathrm{2}} }\:\Rightarrow\sum_{\mathrm{n}=\mathrm{1}} ^{\infty} \:\mathrm{nx}^{\mathrm{n}} \:=\frac{\mathrm{x}}{\left(\mathrm{1}−\mathrm{x}\right)^{\mathrm{2}} }\:\Rightarrow \\ $$$$\left.\sum_{\mathrm{n}=\mathrm{0}} ^{\infty} \:\mathrm{n}\left(\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{n}} \:=\frac{\mathrm{1}}{\mathrm{2}\left(\mathrm{1}−\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{2}} }\:=\frac{\mathrm{1}}{\mathrm{2}×\frac{\mathrm{1}}{\mathrm{4}}}\:=\mathrm{2}\:\Rightarrow\:\mathrm{S}\:=\mathrm{3}×\mathrm{2}\right)\:+\left(\mathrm{2}×\mathrm{2}\right. \\ $$$$\mathrm{S}\:=\mathrm{10} \\ $$
Commented by Algoritm last updated on 11/Jun/20
$$\mathrm{an}\:\mathrm{elementary}\:\:\mathrm{solution}\:\mathrm{was}\:\mathrm{needed} \\ $$$$\mathrm{2S}−\mathrm{S}=? \\ $$