Menu Close

Question-98278




Question Number 98278 by liki last updated on 12/Jun/20
Answered by mr W last updated on 12/Jun/20
side length of square =a  height of box =h  volume V=a^2 h  surface S=a^2 +4ah=a^2 +4a(V/a^2 )=a^2 +((4V)/a)  (dS/da)=2a−((4V)/a^2 )=0  ⇒a^3 =2V  ⇒a=((2V))^(1/3)   h=(V/a^2 )=(V/( ((4V^2 ))^(1/3) ))=((V)^(1/3) /( (4)^(1/3) ))  ⇒(h/a)=(1/( (4)^(1/3) ×(2)^(1/3) ))=(1/2)
$${side}\:{length}\:{of}\:{square}\:={a} \\ $$$${height}\:{of}\:{box}\:={h} \\ $$$${volume}\:{V}={a}^{\mathrm{2}} {h} \\ $$$${surface}\:{S}={a}^{\mathrm{2}} +\mathrm{4}{ah}={a}^{\mathrm{2}} +\mathrm{4}{a}\frac{{V}}{{a}^{\mathrm{2}} }={a}^{\mathrm{2}} +\frac{\mathrm{4}{V}}{{a}} \\ $$$$\frac{{dS}}{{da}}=\mathrm{2}{a}−\frac{\mathrm{4}{V}}{{a}^{\mathrm{2}} }=\mathrm{0} \\ $$$$\Rightarrow{a}^{\mathrm{3}} =\mathrm{2}{V} \\ $$$$\Rightarrow{a}=\sqrt[{\mathrm{3}}]{\mathrm{2}{V}} \\ $$$${h}=\frac{{V}}{{a}^{\mathrm{2}} }=\frac{{V}}{\:\sqrt[{\mathrm{3}}]{\mathrm{4}{V}^{\mathrm{2}} }}=\frac{\sqrt[{\mathrm{3}}]{{V}}}{\:\sqrt[{\mathrm{3}}]{\mathrm{4}}} \\ $$$$\Rightarrow\frac{{h}}{{a}}=\frac{\mathrm{1}}{\:\sqrt[{\mathrm{3}}]{\mathrm{4}}×\sqrt[{\mathrm{3}}]{\mathrm{2}}}=\frac{\mathrm{1}}{\mathrm{2}} \\ $$
Commented by liki last updated on 12/Jun/20
..blessed sir,i appriciate your time
$$..\boldsymbol{\mathrm{blessed}}\:\boldsymbol{\mathrm{sir}},\mathrm{i}\:\boldsymbol{\mathrm{appriciate}}\:\boldsymbol{\mathrm{your}}\:\boldsymbol{\mathrm{time}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *