Menu Close

Question-98521




Question Number 98521 by pranesh last updated on 14/Jun/20
Answered by abdomathmax last updated on 15/Jun/20
we have ∣x∣+x ≥0  for all x  if  x ≥0 we get x+x≥0 true  if x ≤0 we get −x+x≥0 also true  so  x∈D_f  ⇔ x>0 and  x≠(π/2) +kπ  (k ∈Z)
$$\mathrm{we}\:\mathrm{have}\:\mid\mathrm{x}\mid+\mathrm{x}\:\geqslant\mathrm{0}\:\:\mathrm{for}\:\mathrm{all}\:\mathrm{x} \\ $$$$\mathrm{if}\:\:\mathrm{x}\:\geqslant\mathrm{0}\:\mathrm{we}\:\mathrm{get}\:\mathrm{x}+\mathrm{x}\geqslant\mathrm{0}\:\mathrm{true} \\ $$$$\mathrm{if}\:\mathrm{x}\:\leqslant\mathrm{0}\:\mathrm{we}\:\mathrm{get}\:−\mathrm{x}+\mathrm{x}\geqslant\mathrm{0}\:\mathrm{also}\:\mathrm{true}\:\:\mathrm{so} \\ $$$$\mathrm{x}\in\mathrm{D}_{\mathrm{f}} \:\Leftrightarrow\:\mathrm{x}>\mathrm{0}\:\mathrm{and}\:\:\mathrm{x}\neq\frac{\pi}{\mathrm{2}}\:+\mathrm{k}\pi\:\:\left(\mathrm{k}\:\in\mathrm{Z}\right) \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *