Menu Close

Question-98831




Question Number 98831 by bramlex last updated on 16/Jun/20
Commented by john santu last updated on 16/Jun/20
∫ ((2 dx)/(x^8 (1−(1/x^7 )))) = ∫ ((2d(1−(1/x^7 )))/(7(1−(1/x^7 ))))  = (2/7) ln (((x^7 −1)/x^7 )) + c
$$\int\:\frac{\mathrm{2}\:\mathrm{dx}}{\mathrm{x}^{\mathrm{8}} \left(\mathrm{1}−\frac{\mathrm{1}}{\mathrm{x}^{\mathrm{7}} }\right)}\:=\:\int\:\frac{\mathrm{2d}\left(\mathrm{1}−\frac{\mathrm{1}}{\mathrm{x}^{\mathrm{7}} }\right)}{\mathrm{7}\left(\mathrm{1}−\frac{\mathrm{1}}{\mathrm{x}^{\mathrm{7}} }\right)} \\ $$$$=\:\frac{\mathrm{2}}{\mathrm{7}}\:\mathrm{ln}\:\left(\frac{\mathrm{x}^{\mathrm{7}} −\mathrm{1}}{\mathrm{x}^{\mathrm{7}} }\right)\:+\:\mathrm{c}\: \\ $$
Answered by Dwaipayan Shikari last updated on 17/Jun/20
∫(2/(x^8 −x))dx=2∫((1/x^8 )/(1−(1/x^7 )))dx=(2/7)ln(1−(1/x^7 ))+constant
$$\int\frac{\mathrm{2}}{{x}^{\mathrm{8}} −{x}}{dx}=\mathrm{2}\int\frac{\frac{\mathrm{1}}{{x}^{\mathrm{8}} }}{\mathrm{1}−\frac{\mathrm{1}}{{x}^{\mathrm{7}} }}{dx}=\frac{\mathrm{2}}{\mathrm{7}}{ln}\left(\mathrm{1}−\frac{\mathrm{1}}{{x}^{\mathrm{7}} }\right)+{constant} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *