Question Number 99218 by 9027201563 last updated on 19/Jun/20
Commented by 9027201563 last updated on 19/Jun/20
$${pls}\:{k}\:{need}\:{solution}\:{immediately} \\ $$
Commented by bobhans last updated on 19/Jun/20
$$\left(\mathrm{1}\right)+\left(\mathrm{2}\right)+\left(\mathrm{3}\right)\:\Rightarrow\mathrm{x}+\mathrm{y}+\mathrm{z}+\frac{\mathrm{9}}{\mathrm{x}}+\frac{\mathrm{4}}{\mathrm{y}}+\frac{\mathrm{16}}{\mathrm{z}}\:=\:\mathrm{18} \\ $$$$\left(\mathrm{x}+\frac{\mathrm{9}}{\mathrm{x}}\right)+\left(\mathrm{y}+\frac{\mathrm{4}}{\mathrm{y}}\right)+\left(\mathrm{z}+\frac{\mathrm{16}}{\mathrm{z}}\right)\:=\:\mathrm{18} \\ $$$$\left(\mathrm{x}+\frac{\mathrm{9}}{\mathrm{x}}−\mathrm{6}\right)+\left(\mathrm{y}+\frac{\mathrm{4}}{\mathrm{y}}−\mathrm{4}\right)+\left(\mathrm{z}+\frac{\mathrm{16}}{\mathrm{z}}−\mathrm{8}\right)\:=\:\mathrm{0} \\ $$$$\begin{cases}{\mathrm{x}^{\mathrm{2}} −\mathrm{6x}+\mathrm{9}\:=\:\mathrm{0}\:\Rightarrow\mathrm{x}\:=\:\mathrm{3}}\\{\mathrm{y}^{\mathrm{2}} −\mathrm{4y}+\mathrm{4}\:=\:\mathrm{0}\:\Rightarrow\mathrm{y}=\:\mathrm{2}}\\{\mathrm{z}^{\mathrm{2}} −\mathrm{8z}+\mathrm{16}\:=\:\mathrm{0}\:\Rightarrow\mathrm{z}\:=\:\mathrm{4}\:}\end{cases} \\ $$$$ \\ $$
Commented by 9027201563 last updated on 19/Jun/20
Thanks Alot I really appreciate